SViMULATE: a computer program facilitating interactive, multi-mode simulation of analytical ultracentrifugation data

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Chad A. Brautigam
{"title":"SViMULATE: a computer program facilitating interactive, multi-mode simulation of analytical ultracentrifugation data","authors":"Chad A. Brautigam","doi":"10.1007/s00249-023-01637-0","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to simulate sedimentation velocity (SV) analytical ultracentrifugation (AUC) experiments has proved to be a valuable tool for research planning, hypothesis testing, and pedagogy. Several options for SV data simulation exist, but they often lack interactivity and require up-front calculations on the part of the user. This work introduces SViMULATE, a program designed to make AUC experimental simulation quick, straightforward, and interactive. SViMULATE takes user-provided parameters and outputs simulated AUC data in a format suitable for subsequent analyses, if desired. The user is not burdened by the necessity to calculate hydrodynamic parameters for simulated macromolecules, as the program can compute these properties on the fly. It also frees the user of decisions regarding simulation stop time. SViMULATE features a graphical view of the species that are under simulation, and there is no limit on their number. Additionally, the program emulates data from different experimental modalities and data-acquisition systems, including the realistic simulation of noise for the absorbance optical system. The executable is available for immediate download.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"293 - 302"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01637-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

The ability to simulate sedimentation velocity (SV) analytical ultracentrifugation (AUC) experiments has proved to be a valuable tool for research planning, hypothesis testing, and pedagogy. Several options for SV data simulation exist, but they often lack interactivity and require up-front calculations on the part of the user. This work introduces SViMULATE, a program designed to make AUC experimental simulation quick, straightforward, and interactive. SViMULATE takes user-provided parameters and outputs simulated AUC data in a format suitable for subsequent analyses, if desired. The user is not burdened by the necessity to calculate hydrodynamic parameters for simulated macromolecules, as the program can compute these properties on the fly. It also frees the user of decisions regarding simulation stop time. SViMULATE features a graphical view of the species that are under simulation, and there is no limit on their number. Additionally, the program emulates data from different experimental modalities and data-acquisition systems, including the realistic simulation of noise for the absorbance optical system. The executable is available for immediate download.

Abstract Image

模拟:一个计算机程序,促进交互式,多模式模拟分析超离心数据
模拟沉降速度(SV)分析超离心(AUC)实验的能力已被证明是研究计划,假设检验和教学的宝贵工具。存在几种SV数据模拟选项,但它们通常缺乏交互性,并且需要用户进行预先计算。本工作介绍了svsimulate,一个旨在使AUC实验仿真快速,直观和交互式的程序。如果需要,svsimulate接受用户提供的参数,并以适合后续分析的格式输出模拟的AUC数据。用户不需要计算模拟大分子的流体动力学参数,因为程序可以在飞行中计算这些特性。它还使用户不必决定模拟停止时间。SViMULATE的特点是在模拟下的物种的图形视图,并且它们的数量没有限制。此外,该程序模拟了来自不同实验模式和数据采集系统的数据,包括对吸光度光学系统的噪声的现实模拟。可执行文件可立即下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信