{"title":"Data-driven model selection for same-realization predictions in autoregressive processes","authors":"Kare Kamila","doi":"10.1007/s10463-022-00855-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is about the one-step ahead prediction of the future of observations drawn from an infinite-order autoregressive AR(<span>\\(\\infty \\)</span>) process. It aims to design penalties (fully data driven) ensuring that the selected model verifies the efficiency property but in the non-asymptotic framework. We show that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. To achieve these results, we needed to overcome the dependence difficulties by following a classical approach which consists in restricting to a set where the empirical covariance matrix is equivalent to the theoretical one. We show that this event happens with probability larger than <span>\\(1-c_0/n^2\\)</span> with <span>\\(c_0>0\\)</span>. The proposed data-driven criteria are based on the minimization of the penalized criterion akin to the Mallows’s <span>\\(C_p\\)</span>.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00855-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is about the one-step ahead prediction of the future of observations drawn from an infinite-order autoregressive AR(\(\infty \)) process. It aims to design penalties (fully data driven) ensuring that the selected model verifies the efficiency property but in the non-asymptotic framework. We show that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. To achieve these results, we needed to overcome the dependence difficulties by following a classical approach which consists in restricting to a set where the empirical covariance matrix is equivalent to the theoretical one. We show that this event happens with probability larger than \(1-c_0/n^2\) with \(c_0>0\). The proposed data-driven criteria are based on the minimization of the penalized criterion akin to the Mallows’s \(C_p\).
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.