{"title":"Enhancing Glass Transition Temperature of Poly(methylmethacrylate) by Incorporating Methacrylate-Functional Silane Grafted SiO2 Nanoparticles","authors":"Emre Yavuz, Ramazan Erdem, Esin Akarsu","doi":"10.1134/S1560090422700191","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposites attract the attention of researchers due to the increasing demand on materials having unique properties. Incorporation of nanoparticles into polymers considerably improves some materials properties such as thermal stability. In current study, PMMA/SiO<sub>2</sub> hybrid nanocomposites including ungrafted and grafted silica nanoparticles have been prepared. The surfaces of SiO<sub>2</sub> nanoparticles were grafted with 3-(methacryloyloxypropyl)trimethoxysilane (MPTS) and 3-(methacryloyloxypropyl)triethoxysilane (MPTES) by sol-gel technique. The structure, morphology and thermal properties of the obtained bulk materials were investigated by FTIR, SEM-EDX, TGA and DSC. Based on the studies of infrared spectroscopy, polymerization of MMA monomers was approved by following the intensity of acrylate group. Thermal characteristics of nanocomposite structures enhanced remarkably as SiO<sub>2</sub> nanoparticles were introduced to the polymer matrix and glass transition temperature <i>T</i><sub>g</sub> value reached to the highest (166°C) for MPTES@20% SiO<sub>2</sub>-PMMA hybrid nanocomposite. According to SEM analysis, the most homogenous structure belonged to MPTES@20% SiO<sub>2</sub>-PMMA hybrid nanocomposite.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"64 4","pages":"546 - 552"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090422700191","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocomposites attract the attention of researchers due to the increasing demand on materials having unique properties. Incorporation of nanoparticles into polymers considerably improves some materials properties such as thermal stability. In current study, PMMA/SiO2 hybrid nanocomposites including ungrafted and grafted silica nanoparticles have been prepared. The surfaces of SiO2 nanoparticles were grafted with 3-(methacryloyloxypropyl)trimethoxysilane (MPTS) and 3-(methacryloyloxypropyl)triethoxysilane (MPTES) by sol-gel technique. The structure, morphology and thermal properties of the obtained bulk materials were investigated by FTIR, SEM-EDX, TGA and DSC. Based on the studies of infrared spectroscopy, polymerization of MMA monomers was approved by following the intensity of acrylate group. Thermal characteristics of nanocomposite structures enhanced remarkably as SiO2 nanoparticles were introduced to the polymer matrix and glass transition temperature Tg value reached to the highest (166°C) for MPTES@20% SiO2-PMMA hybrid nanocomposite. According to SEM analysis, the most homogenous structure belonged to MPTES@20% SiO2-PMMA hybrid nanocomposite.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed