Jianpin Ye, Zhiwei Zeng, Yuxian Chen, Zhenkun Wu, Qingwei Yang, Tao Sun
{"title":"Examining an Association of Single Nucleotide Polymorphisms with Hyperuricemia in Chinese Flight Attendants","authors":"Jianpin Ye, Zhiwei Zeng, Yuxian Chen, Zhenkun Wu, Qingwei Yang, Tao Sun","doi":"10.2147/PGPM.S364206","DOIUrl":null,"url":null,"abstract":"Background Both genetic and environmental factors strongly affect serum uric acid (SUA) concentrations. The incidence of hyperuricemia tends to be younger in the Chinese population. In particular, we have found a high prevalence of hyperuricemia among Chinese flight attendants, aged from 20 to 40, in our survey. This study aims to evaluate whether there is an association between gene polymorphisms and hyperuricemia among Chinese flight attendants. Methods A total of 532 flight attendants with high and normal serum uric acid levels were recruited. Allele-specific polymerase chain reaction (AS-PCR) was performed using blood samples of enrolled subjects. Results Previous studies have reported single nucleotide polymorphisms (SNPs) that are tightly associated with uric acid levels. Among them, six SNPs that are strongly associated with SUA or gout in Asians, for instance ABCG2 (rs2231142, rs72552713 and rs2231137), GCKR (rs780094), SLC2A9 (rs1014290) and SLC17A1 (rs1183201), were selected for AS-PCR analyses. We found that SNPs such as ABCG2 rs2231142, GCKR rs780094 and SLC2A9 rs1014290 are strongly associated with hyperuricemia in male flight attendants, and SLC2A9 rs1014290 among female flight attendants. Conclusion Our study provides evidences of an association between SNPs and hyperuricemia in the Chinese flight attendants, and highlights the significance of improving diagnostics and prevention of disease development in uric acid metabolism disorders and gout using these SNPs.","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"15 1","pages":"589 - 602"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S364206","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Background Both genetic and environmental factors strongly affect serum uric acid (SUA) concentrations. The incidence of hyperuricemia tends to be younger in the Chinese population. In particular, we have found a high prevalence of hyperuricemia among Chinese flight attendants, aged from 20 to 40, in our survey. This study aims to evaluate whether there is an association between gene polymorphisms and hyperuricemia among Chinese flight attendants. Methods A total of 532 flight attendants with high and normal serum uric acid levels were recruited. Allele-specific polymerase chain reaction (AS-PCR) was performed using blood samples of enrolled subjects. Results Previous studies have reported single nucleotide polymorphisms (SNPs) that are tightly associated with uric acid levels. Among them, six SNPs that are strongly associated with SUA or gout in Asians, for instance ABCG2 (rs2231142, rs72552713 and rs2231137), GCKR (rs780094), SLC2A9 (rs1014290) and SLC17A1 (rs1183201), were selected for AS-PCR analyses. We found that SNPs such as ABCG2 rs2231142, GCKR rs780094 and SLC2A9 rs1014290 are strongly associated with hyperuricemia in male flight attendants, and SLC2A9 rs1014290 among female flight attendants. Conclusion Our study provides evidences of an association between SNPs and hyperuricemia in the Chinese flight attendants, and highlights the significance of improving diagnostics and prevention of disease development in uric acid metabolism disorders and gout using these SNPs.
期刊介绍:
Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability.
In particular, emphasis will be given to:
Genomic and proteomic profiling
Genetics and drug metabolism
Targeted drug identification and discovery
Optimizing drug selection & dosage based on patient''s genetic profile
Drug related morbidity & mortality intervention
Advanced disease screening and targeted therapeutic intervention
Genetic based vaccine development
Patient satisfaction and preference
Health economic evaluations
Practical and organizational issues in the development and implementation of personalized medicine programs.