{"title":"Canonical Correlation Analysis and Visualization for Big Data in Smart Grid","authors":"Zigui Jiang;Qihao Yuan;Rongheng Lin;Fangchun Yang","doi":"10.1109/JETCAS.2023.3290418","DOIUrl":null,"url":null,"abstract":"Electricity consumption behaviors are influenced by various external and internal factors such as climate, location, building type, consumer characteristics and even other energy consumption. In order to investigate the electricity consumption behaviors of diverse consumers, we propose a methodology based on canonical correlation analysis to explore the correlation among electricity consumption, gas consumption and climate change under different circumstances. We first preprocess three multivariable datasets that contain 24-value daily data in a one-year period, and conduct consumer segmentation based on climate zones, locations and building types. Then an optimized canonical correlation analysis model with an optimal result selection mechanism is adopted to calculate the canonical correlations and weights of every set of daily data. Finally, we propose a post-processing analysis for further comparison on the calculated results. We investigate three research questions to present and discuss the analysis results, including canonical correlation and weights overview, typical patterns analysis, and comparison on climate zones and locations.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 3","pages":"702-711"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10167622/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity consumption behaviors are influenced by various external and internal factors such as climate, location, building type, consumer characteristics and even other energy consumption. In order to investigate the electricity consumption behaviors of diverse consumers, we propose a methodology based on canonical correlation analysis to explore the correlation among electricity consumption, gas consumption and climate change under different circumstances. We first preprocess three multivariable datasets that contain 24-value daily data in a one-year period, and conduct consumer segmentation based on climate zones, locations and building types. Then an optimized canonical correlation analysis model with an optimal result selection mechanism is adopted to calculate the canonical correlations and weights of every set of daily data. Finally, we propose a post-processing analysis for further comparison on the calculated results. We investigate three research questions to present and discuss the analysis results, including canonical correlation and weights overview, typical patterns analysis, and comparison on climate zones and locations.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.