{"title":"Building artificial intelligence enabled resilient supply chain: a multi-method approach","authors":"R. Singh, S. Modgil, A. Shore","doi":"10.1108/jeim-09-2022-0326","DOIUrl":null,"url":null,"abstract":"PurposeIn the uncertain business environment, the supply chains are under pressure to balance routine operations and prepare for adverse events. Consequently, this research investigates how artificial intelligence is used to enable resilience among supply chains.Design/methodology/approachThis study first analyzed the relationship among different characteristics of AI-enabled supply chain and how these elements take it towards resilience by collecting the responses from 27 supply chain professionals. Furthermore, to validate the results, an empirical analysis is conducted where the responses from 231 supply chain professionals are collected.FindingsFindings indicate that the disruption impact of an event depends on the degree of transparency kept and provided to all supply chain partners. This is further validated through empirical study, where the impact of transparency facilitates the mass customization of the procurement strategy to Last Mile Delivery to reduce the impact of disruption. Hence, AI facilitates resilience in the supply chain.Originality/valueThis study adds to the domain of supply chain and information systems management by identifying the driving and dependent elements that AI facilitates and further validating the findings and structure of the elements through empirical analysis. The research also provides meaningful implications for theory and practice.","PeriodicalId":47889,"journal":{"name":"Journal of Enterprise Information Management","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enterprise Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jeim-09-2022-0326","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
PurposeIn the uncertain business environment, the supply chains are under pressure to balance routine operations and prepare for adverse events. Consequently, this research investigates how artificial intelligence is used to enable resilience among supply chains.Design/methodology/approachThis study first analyzed the relationship among different characteristics of AI-enabled supply chain and how these elements take it towards resilience by collecting the responses from 27 supply chain professionals. Furthermore, to validate the results, an empirical analysis is conducted where the responses from 231 supply chain professionals are collected.FindingsFindings indicate that the disruption impact of an event depends on the degree of transparency kept and provided to all supply chain partners. This is further validated through empirical study, where the impact of transparency facilitates the mass customization of the procurement strategy to Last Mile Delivery to reduce the impact of disruption. Hence, AI facilitates resilience in the supply chain.Originality/valueThis study adds to the domain of supply chain and information systems management by identifying the driving and dependent elements that AI facilitates and further validating the findings and structure of the elements through empirical analysis. The research also provides meaningful implications for theory and practice.
期刊介绍:
The Journal of Enterprise Information Management (JEIM) is a significant contributor to the normative literature, offering both conceptual and practical insights supported by innovative discoveries that enrich the existing body of knowledge.
Within its pages, JEIM presents research findings sourced from globally renowned experts. These contributions encompass scholarly examinations of cutting-edge theories and practices originating from leading research institutions. Additionally, the journal features inputs from senior business executives and consultants, who share their insights gleaned from specific enterprise case studies. Through these reports, readers benefit from a comparative analysis of different environmental contexts, facilitating valuable learning experiences.
JEIM's distinctive blend of theoretical analysis and practical application fosters comprehensive discussions on commercial discoveries. This approach enhances the audience's comprehension of contemporary, applied, and rigorous information management practices, which extend across entire enterprises and their intricate supply chains.