Optical engineering of PbS colloidal quantum dot solar cells via Fabry–Perot resonance and distributed Bragg reflectors

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sumin Bae, Matthew Duff, Jun Young Hong, Jung-Kun Lee
{"title":"Optical engineering of PbS colloidal quantum dot solar cells via Fabry–Perot resonance and distributed Bragg reflectors","authors":"Sumin Bae,&nbsp;Matthew Duff,&nbsp;Jun Young Hong,&nbsp;Jung-Kun Lee","doi":"10.1186/s40580-023-00379-1","DOIUrl":null,"url":null,"abstract":"<div><p>A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry–Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO<sub>2</sub>-TiO<sub>2</sub> multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00379-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-023-00379-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry–Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO2-TiO2 multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.

基于Fabry-Perot共振和分布式Bragg反射镜的PbS胶体量子点太阳能电池光学工程
由于载流子在PbS胶体量子点(CQD)薄膜中的扩散长度与CQD薄膜的厚度相当,因此在光吸收和电荷输移之间的权衡是PbS胶体量子点(CQD)太阳能电池中众所周知的问题。我们通过结合Fabry-Perot (FP)谐振器和分布式Bragg反射器(DBR)来减少光吸收和电荷输运之间的权衡。在DBR和作为顶部透明电极的介电-金属-介电膜之间形成FP共振。采用SiO2-TiO2多层膜形成DBR。在不改变CQD薄膜厚度的情况下,FP共振增强了DBR谐振波长附近的光吸收。通过将FP共振与ag包覆DBR的高反射率耦合,进一步提高了FP共振波长附近的光吸收。当FP共振和DBR相结合时,PbS CQD太阳能电池的功率转换效率(PCE)提高54%。此外,DBR辅助FP共振使非常薄的PbS层吸收近红外光的能力增加四倍。在不牺牲平均可见光透过率(AVT)的情况下,薄PbS CQD太阳能电池的整体PCE提高了24%。我们的研究结果显示了如何克服CQD的固有问题,并开发出一种半透明太阳能电池,其中波长选择性吸收和可见光透明度是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信