{"title":"Developmental programming: prenatal and postnatal consequences of hyperthermia in dairy cows and calves","authors":"Morteza Hosseini Ghaffari","doi":"10.1016/j.domaniend.2022.106723","DOIUrl":null,"url":null,"abstract":"<div><p>With global warming, the incidence of heat stress in dairy cows is increasing in many countries. Temperatures outside the thermoneutral zone (heat stress) are one of the environmental factors with the greatest impact on milk production and reproductive performance of dairy cows. In addition to several biological mechanisms that may contribute to the effects of fetal programming, epigenetic modifications have also been investigated as possible mediators of the observed associations between maternal heat stress during late gestation and performance and health later in life. In utero programming of these offspring may coordinate changes in thermoregulation, mammary gland development, and milk production ability at different developmental stages. This review examines the effects of prenatal and postnatal hyperthermia on the developmental outcomes of dairy cows, as well as the physiological and molecular mechanisms that may be responsible for the negative phenotypic consequences of heat stress that persist throughout the neonatal and adult periods and may have multigenerational implications. The physiological and molecular mechanisms underlying the negative phenotypic consequences of heat stress are discussed. Research challenges in this area, future research recommendations, and therapeutic applications are also discussed. In summary, strategies to reduce heat stress during the dry period should consider not only the productivity of the pregnant cow but also the well-being of the newborn calf.</p></div>","PeriodicalId":11356,"journal":{"name":"Domestic animal endocrinology","volume":"80 ","pages":"Article 106723"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Domestic animal endocrinology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0739724022000145","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 6
Abstract
With global warming, the incidence of heat stress in dairy cows is increasing in many countries. Temperatures outside the thermoneutral zone (heat stress) are one of the environmental factors with the greatest impact on milk production and reproductive performance of dairy cows. In addition to several biological mechanisms that may contribute to the effects of fetal programming, epigenetic modifications have also been investigated as possible mediators of the observed associations between maternal heat stress during late gestation and performance and health later in life. In utero programming of these offspring may coordinate changes in thermoregulation, mammary gland development, and milk production ability at different developmental stages. This review examines the effects of prenatal and postnatal hyperthermia on the developmental outcomes of dairy cows, as well as the physiological and molecular mechanisms that may be responsible for the negative phenotypic consequences of heat stress that persist throughout the neonatal and adult periods and may have multigenerational implications. The physiological and molecular mechanisms underlying the negative phenotypic consequences of heat stress are discussed. Research challenges in this area, future research recommendations, and therapeutic applications are also discussed. In summary, strategies to reduce heat stress during the dry period should consider not only the productivity of the pregnant cow but also the well-being of the newborn calf.
期刊介绍:
Domestic Animal Endocrinology publishes scientific papers dealing with the study of the endocrine physiology of domestic animal species. Those manuscripts utilizing other species as models for clinical or production problems associated with domestic animals are also welcome.
Topics covered include:
Classical and reproductive endocrinology-
Clinical and applied endocrinology-
Regulation of hormone secretion-
Hormone action-
Molecular biology-
Cytokines-
Growth factors