Scaling limit of stationary coupled Sasamoto-Spohn models

IF 1.1 3区 数学 Q2 STATISTICS & PROBABILITY
Ian Butelmann, Gregorio R. Moreno Flores
{"title":"Scaling limit of stationary coupled Sasamoto-Spohn models","authors":"Ian Butelmann, Gregorio R. Moreno Flores","doi":"10.1214/22-ejp819","DOIUrl":null,"url":null,"abstract":"We introduce a family of stationary coupled Sasamoto-Spohn models and show that, in the weakly asymmetric regime, they converge to the energy solution of coupled Burgers equations. Moreover, we show that any system of coupled Burgers equations satisfying the so-called trilinear condition ensuring stationarity can be obtained as the scaling limit of a suitable system of coupled Sasamoto-Spohn models. The core of our proof, which avoids the use of spectral gap estimates, consists in a second order Boltzmann-Gibbs principle for the discrete model.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp819","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a family of stationary coupled Sasamoto-Spohn models and show that, in the weakly asymmetric regime, they converge to the energy solution of coupled Burgers equations. Moreover, we show that any system of coupled Burgers equations satisfying the so-called trilinear condition ensuring stationarity can be obtained as the scaling limit of a suitable system of coupled Sasamoto-Spohn models. The core of our proof, which avoids the use of spectral gap estimates, consists in a second order Boltzmann-Gibbs principle for the discrete model.
静止耦合Sasamoto-Spohn模型的尺度极限
我们引入了一类稳态耦合Sasamoto-Spohn模型,并证明了在弱不对称条件下,它们收敛于耦合Burgers方程的能量解。此外,我们还证明了任何满足三线性平稳条件的耦合Burgers方程系统都可以作为合适的Sasamoto-Spohn模型耦合系统的标度极限。我们的证明的核心,避免了使用谱隙估计,包括二阶Boltzmann-Gibbs原理的离散模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信