{"title":"Whole-Mount Immunofluorescent Labeling of the Mosquito Central Nervous System.","authors":"Meg A Younger","doi":"10.1101/pdb.prot108336","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquito-borne disease is a major global public health issue. One path toward the development of evidence-based strategies to limit mosquito biting is the study of the mosquito nervous system-in particular, the sensory systems that drive biting behavior. The central nervous system of insects consists of the brain and the ventral nerve cord. Here, we describe a protocol for dissecting, immunofluorescent labeling, and imaging both of these structures in the mosquito. This protocol was optimized for <i>Aedes aegypti</i> and works well on <i>Anopheles gambiae</i> tissue. It has not been tested in other mosquito species, but we anticipate that it would work on a range of mosquitoes, and, if not, our protocol will provide a starting point from which to optimize. Notably, a limited number of antibodies cross-react with <i>Ae. aegypti</i> proteins. This protocol is intended for use with validated antibodies and can also be used to test new antibodies as they are generated. It has been successfully used to visualize protein tags, such as green fluorescent protein, that have been introduced into the mosquito to amplify or detect their presence.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108336"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mosquito-borne disease is a major global public health issue. One path toward the development of evidence-based strategies to limit mosquito biting is the study of the mosquito nervous system-in particular, the sensory systems that drive biting behavior. The central nervous system of insects consists of the brain and the ventral nerve cord. Here, we describe a protocol for dissecting, immunofluorescent labeling, and imaging both of these structures in the mosquito. This protocol was optimized for Aedes aegypti and works well on Anopheles gambiae tissue. It has not been tested in other mosquito species, but we anticipate that it would work on a range of mosquitoes, and, if not, our protocol will provide a starting point from which to optimize. Notably, a limited number of antibodies cross-react with Ae. aegypti proteins. This protocol is intended for use with validated antibodies and can also be used to test new antibodies as they are generated. It has been successfully used to visualize protein tags, such as green fluorescent protein, that have been introduced into the mosquito to amplify or detect their presence.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.