Jiahui Ma , Xiaoling Huang , Zhenxing Li , Saiying Wang , Xuebin Yan , Dong Huang , Haocheng Zhou
{"title":"Photic sensitization is mediated by cortico-accumbens pathway in rats with trigeminal neuropathic pain","authors":"Jiahui Ma , Xiaoling Huang , Zhenxing Li , Saiying Wang , Xuebin Yan , Dong Huang , Haocheng Zhou","doi":"10.1016/j.pneurobio.2023.102533","DOIUrl":null,"url":null,"abstract":"<div><p><span>Exposure to light stimuli may trigger or exacerbate perception of pain, also known as a common yet debilitating symptom of photophobia in patient with chronic orofacial pain. Mechanism underlying this phenomenon of photic sensitization in neuropathic condition remains elusive. Here, we found that rats developed hypersensitivity to normal light illumination after establishment of chronic constriction injury of infraorbital nerve<span> (ION-CCI) model, which can be attenuated by blocking the exposure of photic stimulation. Additionally, this behavioral phenotype of light-sensitivity impairment was associated with overexpression of anterior cingulate cortex (ACC) c-fos positive neurons, enhancement of neural excitability in the ACC neurons and its excitatory synaptic transmission between nucleus accumbens<span> (NAc). Optogenetic<span> and chemogenic silencing of ACC-NAc pathway improved trigeminal sensitization in responses to light stimuli by decreasing spontaneous pain-like episodes in ION-CCI animals. In contrast, selective activation of ACC-to-NAc circuits enhanced photic hypersensitivity in dark environment. Thus, our data provided novel role of ACC and its projection to NAc in bidirectional modulation of photic sensation, which may contribute to the understanding of photic allodynia in trigeminal </span></span></span></span>neuropathic pain status.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"231 ","pages":"Article 102533"},"PeriodicalIF":6.7000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030100822300134X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to light stimuli may trigger or exacerbate perception of pain, also known as a common yet debilitating symptom of photophobia in patient with chronic orofacial pain. Mechanism underlying this phenomenon of photic sensitization in neuropathic condition remains elusive. Here, we found that rats developed hypersensitivity to normal light illumination after establishment of chronic constriction injury of infraorbital nerve (ION-CCI) model, which can be attenuated by blocking the exposure of photic stimulation. Additionally, this behavioral phenotype of light-sensitivity impairment was associated with overexpression of anterior cingulate cortex (ACC) c-fos positive neurons, enhancement of neural excitability in the ACC neurons and its excitatory synaptic transmission between nucleus accumbens (NAc). Optogenetic and chemogenic silencing of ACC-NAc pathway improved trigeminal sensitization in responses to light stimuli by decreasing spontaneous pain-like episodes in ION-CCI animals. In contrast, selective activation of ACC-to-NAc circuits enhanced photic hypersensitivity in dark environment. Thus, our data provided novel role of ACC and its projection to NAc in bidirectional modulation of photic sensation, which may contribute to the understanding of photic allodynia in trigeminal neuropathic pain status.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.