Jasmin Dionne Haslbauer, Anna Stalder, Carl Zinner, Stefano Bassetti, Kirsten Diana Mertz, Philip Went, Matthias Matter, Alexandar Tzankov
{"title":"Immunohistochemical and Transcriptional Analysis of SARS-CoV-2 Entry Factors and Renin-Angiotensin-Aldosterone System Components in Lethal COVID-19.","authors":"Jasmin Dionne Haslbauer, Anna Stalder, Carl Zinner, Stefano Bassetti, Kirsten Diana Mertz, Philip Went, Matthias Matter, Alexandar Tzankov","doi":"10.1159/000520221","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19.</p><p><strong>Methods: </strong>Lung tissue from COVID-19 autopsies (n = 27) and controls (n = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, in-situ hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for ACE2, ACE and TMPRSS2 was performed.</p><p><strong>Results: </strong>Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of ACE2 gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/106 RNase P-gene copies) and decreased ACE/ACE2-expression ratios (4.58 vs. 11.07) than patients without. TMPRSS2 expression was significantly (1.76-fold) higher in COVID-19 patients than controls.</p><p><strong>Conclusion: </strong>Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.</p>","PeriodicalId":244631,"journal":{"name":"Pathobiology : journal of immunopathology, molecular and cellular biology","volume":" ","pages":"166-177"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/a5/pat-0001.PMC8805061.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology : journal of immunopathology, molecular and cellular biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000520221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction: Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19.
Methods: Lung tissue from COVID-19 autopsies (n = 27) and controls (n = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, in-situ hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for ACE2, ACE and TMPRSS2 was performed.
Results: Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of ACE2 gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/106 RNase P-gene copies) and decreased ACE/ACE2-expression ratios (4.58 vs. 11.07) than patients without. TMPRSS2 expression was significantly (1.76-fold) higher in COVID-19 patients than controls.
Conclusion: Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.