Francisco José de Menezes-Junior, Íncare C Jesus, Caroline Brand, Jorge Mota, Neiva Leite
{"title":"Physical Exercise and Brain-Derived Neurotrophic Factor Concentration in Children and Adolescents: A Systematic Review With Meta-Analysis.","authors":"Francisco José de Menezes-Junior, Íncare C Jesus, Caroline Brand, Jorge Mota, Neiva Leite","doi":"10.1123/pes.2020-0207","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To systematically review the literature on the relationship between physical activity and the effect of physical training on brain-derived neurotrophic factor (BDNF) concentrations in children and adolescents.</p><p><strong>Methods: </strong>The searches were conducted in the databases: PubMed, ScienceDirect, Web of Science, Scopus, SPORTDiscus, Latin American and Caribbean Center for Science Information of Health, and SciELO. All original studies that analyzed the relationship between the practice of physical activity and the effect of physical training on plasma and serum BDNF concentrations in children and adolescents were included. The standardized mean difference (SMD), correlation coefficient (r), and 95% confidence interval were calculated.</p><p><strong>Results: </strong>Eleven studies were selected, totaling 1424 children and adolescents. Cross-sectional studies indicated a significant inverse relationship between physical activity and BDNF concentrations in boys (r = -.117 [-.222, -.009]; P = .033), but not in girls (P = .230). Adolescent athletes tend to have lower serum, but higher plasma BDNF concentrations than sedentary ones (SMD = -0.677 [0.188]; P < .001). An increase in serum BDNF was observed after physical training (SMD = 0.437 [0.183]; P = .017), with no effect in the control group (SMD = 0.235 [0.193]; P = .225).</p><p><strong>Conclusions: </strong>Adolescent athletes tend to show lower serum, but higher plasma BDNF concentrations compared with sedentary individuals. Furthermore, physical training seems to increase serum BDNF concentrations in sedentary adolescents to a small extent.</p>","PeriodicalId":49712,"journal":{"name":"Pediatric Exercise Science","volume":"34 1","pages":"44-53"},"PeriodicalIF":1.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Exercise Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/pes.2020-0207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 4
Abstract
Purpose: To systematically review the literature on the relationship between physical activity and the effect of physical training on brain-derived neurotrophic factor (BDNF) concentrations in children and adolescents.
Methods: The searches were conducted in the databases: PubMed, ScienceDirect, Web of Science, Scopus, SPORTDiscus, Latin American and Caribbean Center for Science Information of Health, and SciELO. All original studies that analyzed the relationship between the practice of physical activity and the effect of physical training on plasma and serum BDNF concentrations in children and adolescents were included. The standardized mean difference (SMD), correlation coefficient (r), and 95% confidence interval were calculated.
Results: Eleven studies were selected, totaling 1424 children and adolescents. Cross-sectional studies indicated a significant inverse relationship between physical activity and BDNF concentrations in boys (r = -.117 [-.222, -.009]; P = .033), but not in girls (P = .230). Adolescent athletes tend to have lower serum, but higher plasma BDNF concentrations than sedentary ones (SMD = -0.677 [0.188]; P < .001). An increase in serum BDNF was observed after physical training (SMD = 0.437 [0.183]; P = .017), with no effect in the control group (SMD = 0.235 [0.193]; P = .225).
Conclusions: Adolescent athletes tend to show lower serum, but higher plasma BDNF concentrations compared with sedentary individuals. Furthermore, physical training seems to increase serum BDNF concentrations in sedentary adolescents to a small extent.
期刊介绍:
Pediatric Exercise Science is a journal committed to enriching the scientific knowledge of exercise during childhood and adolescence. To this end it publishes information that contributes to an understanding of (a) the unique aspects of the physiologic, physical, biochemical, and psychologic responses of children to exercise, (b) the role of exercise in the treatment of pediatric chronic diseases, (c) the importance of physical activity in the prevention of illness and preservation of wellness, and (d) the means by which participation in sports may be made safer and more enjoyable for children and youth. Consideration will be given for publication of work by various methodologies consistent with the scientific approach.
Besides original research, the journal includes review articles, abstracts from other journals, book reviews, and editorial comments. Pediatric Exercise Science encourages the expression of conflicting opinions regarding children and exercise by providing a forum for alternative viewpoints. At the same time it serves as a means of accumulating a base of research information that will allow application of experimental data to clinical practice. The scientific disciplines contributing to this body of knowledge are diverse. Therefore it is the purpose of this journal to provide a common focus for disseminating advances in the science of exercise during childhood. In doing so, the journal allows the opportunity for cross-fertilization of ideas between disciplines that will potentiate the growth of knowledge in this field. Pediatric Exercise Science seeks to stimulate new ideas regarding exercise in children and to increase the awareness of scientists, health care providers, and physical educators of the importance of exercise during childhood.