{"title":"Automatic Semantic Description Extraction from Social Big Data for Emergency Management.","authors":"Bukhoree Sahoh, Anant Choksuriwong","doi":"10.1007/s11518-019-5453-5","DOIUrl":null,"url":null,"abstract":"<p><p>Emergency events are unexpected and dangerous situations which the authorities must manage and respond to as quickly as possible. The main objectives of emergency management are to provide human safety and security, and Social Big Data (SBD) offers an important information source, created directly from eyewitness reports, to assist with these issues. However, the manual extraction of hidden meaning from SBD is both time-consuming and labor-intensive, which are major drawbacks for a process that needs accurate information to be produced in real-time. The solution is an automatic approach to knowledge discovery, and we propose a semantic description technique based on the use of triple store indexing for named entity recognition and relation extraction. Our technique can discover hidden SBD information more effectively than traditional approaches, and can be used for intelligent emergency management.</p>","PeriodicalId":17150,"journal":{"name":"Journal of Systems Science and Systems Engineering","volume":"29 4","pages":"412-428"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11518-019-5453-5","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Systems Engineering","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11518-019-5453-5","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 7
Abstract
Emergency events are unexpected and dangerous situations which the authorities must manage and respond to as quickly as possible. The main objectives of emergency management are to provide human safety and security, and Social Big Data (SBD) offers an important information source, created directly from eyewitness reports, to assist with these issues. However, the manual extraction of hidden meaning from SBD is both time-consuming and labor-intensive, which are major drawbacks for a process that needs accurate information to be produced in real-time. The solution is an automatic approach to knowledge discovery, and we propose a semantic description technique based on the use of triple store indexing for named entity recognition and relation extraction. Our technique can discover hidden SBD information more effectively than traditional approaches, and can be used for intelligent emergency management.
期刊介绍:
Journal of Systems Science and Systems Engineering is an international journal published bimonthly. It aims to foster new thinking and research, to help decision makers to understand the mechanism and complexity of economic, engineering, management, social and technological systems, and learn new developments in theory and practice that could help to improve the performance of systems.
The Journal publishes papers that address the theory, methodology and applications relating to systems science and systems engineering; applications and practical experience of systems engineering in various fields of industry, agriculture, service sector, environment, finance, operating management, E-commerce, logistics, information systems. Technical notes solving practical problems and reviews are also welcome.