Implementation of Q learning and deep Q network for controlling a self balancing robot model.

Robotics and biomimetics Pub Date : 2018-01-01 Epub Date: 2018-12-21 DOI:10.1186/s40638-018-0091-9
Md Muhaimin Rahman, S M Hasanur Rashid, M M Hossain
{"title":"Implementation of Q learning and deep Q network for controlling a self balancing robot model.","authors":"Md Muhaimin Rahman,&nbsp;S M Hasanur Rashid,&nbsp;M M Hossain","doi":"10.1186/s40638-018-0091-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the implementations of two reinforcement learnings namely, Q learning and deep Q network (DQN) on the Gazebo model of a self balancing robot have been discussed. The goal of the experiments is to make the robot model learn the best actions for staying balanced in an environment. The more time it can remain within a specified limit, the more reward it accumulates and hence more balanced it is. We did various tests with many hyperparameters and demonstrated the performance curves.</p>","PeriodicalId":90966,"journal":{"name":"Robotics and biomimetics","volume":"5 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40638-018-0091-9","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40638-018-0091-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper, the implementations of two reinforcement learnings namely, Q learning and deep Q network (DQN) on the Gazebo model of a self balancing robot have been discussed. The goal of the experiments is to make the robot model learn the best actions for staying balanced in an environment. The more time it can remain within a specified limit, the more reward it accumulates and hence more balanced it is. We did various tests with many hyperparameters and demonstrated the performance curves.

Abstract Image

Abstract Image

Abstract Image

Q学习和深度Q网络控制自平衡机器人模型的实现。
本文讨论了两种强化学习即Q学习和深度Q网络(DQN)在自平衡机器人Gazebo模型上的实现。实验的目标是使机器人模型学习在环境中保持平衡的最佳动作。它在特定限制内停留的时间越长,它积累的奖励就越多,因此就越平衡。我们使用许多超参数进行了各种测试,并演示了性能曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信