Co-hydrothermal carbonization of polyvinyl chloride and lignocellulose biomasses: Influence of biomass feedstock on fuel properties and combustion behaviors
Jing Zhang , Lin Zhang , Chuanjin Lin , Cuiping Wang , Peitao Zhao , Yimin Li
{"title":"Co-hydrothermal carbonization of polyvinyl chloride and lignocellulose biomasses: Influence of biomass feedstock on fuel properties and combustion behaviors","authors":"Jing Zhang , Lin Zhang , Chuanjin Lin , Cuiping Wang , Peitao Zhao , Yimin Li","doi":"10.1016/j.scitotenv.2023.161532","DOIUrl":null,"url":null,"abstract":"<div><p>Co-hydrothermal carbonization (co-HTC) of lignocellulose biomass (LB) and chlorinated waste could produce value-added co-hydrochar while simultaneously removing inorganic metal salts and organic chlorine to the liquid phase. However, there is a lack of understanding of the influence of LB feedstocks on the fuel properties and combustion behaviors of co-hydrochars. Therefore, co-hydrochars derived from co-HTC of pine, bamboo, corncob, wheat stalk, and corn stalk with polyvinyl chloride (PVC) at the mass ratio of 9:1 under 260 °C for 30 min were tested. PVC facilitated the hydrolysis, dehydration, and polymerization of LB compositions (hemicellulose, cellulose, soluble lignin, and insoluble lignin). In turn, these LB compositions could prevent PVC aggregation and promote PVC substitution. Hydrochar fragments could coat the PVC surface and hinder its hydrolysis. Interactions between LB compositions and PVC improved the fuel properties and combustion behaviors of co-hydrochars derived from bamboo, corncob, wheat stalk, and corn stalk while decreasing the fuel properties and combustion behaviors of co-hydrochar derived from pine (HC-PPE). Except for HC-PPE, the fuel ratio (fixed carbon/volatile matter) of co-hydrochars increased to 0.90–1.18 and their HHVs reached approximately 17.5–32.45 MJ/kg without an increased risk of chlorine corrosion. The combustion of co-hydrochars was easier and more stable due to their higher ignition and burnout temperatures and lower activation energies. These findings provide comprehensive knowledge of the LB feedstocks influence on fuel properties and combustion behaviors of co-hydrochars, which would contribute to the cost-effective use of LB and chlorinated wastes.</p></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"868 ","pages":"Article 161532"},"PeriodicalIF":8.2000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004896972300147X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Co-hydrothermal carbonization (co-HTC) of lignocellulose biomass (LB) and chlorinated waste could produce value-added co-hydrochar while simultaneously removing inorganic metal salts and organic chlorine to the liquid phase. However, there is a lack of understanding of the influence of LB feedstocks on the fuel properties and combustion behaviors of co-hydrochars. Therefore, co-hydrochars derived from co-HTC of pine, bamboo, corncob, wheat stalk, and corn stalk with polyvinyl chloride (PVC) at the mass ratio of 9:1 under 260 °C for 30 min were tested. PVC facilitated the hydrolysis, dehydration, and polymerization of LB compositions (hemicellulose, cellulose, soluble lignin, and insoluble lignin). In turn, these LB compositions could prevent PVC aggregation and promote PVC substitution. Hydrochar fragments could coat the PVC surface and hinder its hydrolysis. Interactions between LB compositions and PVC improved the fuel properties and combustion behaviors of co-hydrochars derived from bamboo, corncob, wheat stalk, and corn stalk while decreasing the fuel properties and combustion behaviors of co-hydrochar derived from pine (HC-PPE). Except for HC-PPE, the fuel ratio (fixed carbon/volatile matter) of co-hydrochars increased to 0.90–1.18 and their HHVs reached approximately 17.5–32.45 MJ/kg without an increased risk of chlorine corrosion. The combustion of co-hydrochars was easier and more stable due to their higher ignition and burnout temperatures and lower activation energies. These findings provide comprehensive knowledge of the LB feedstocks influence on fuel properties and combustion behaviors of co-hydrochars, which would contribute to the cost-effective use of LB and chlorinated wastes.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.