PREDICTED STRUCTURE AND BINDING MOTIFS OF COLLAGEN α1(XI).

Owen M McDougal, Lisa R Warner, Chris Mallory, Julia Thom Oxford
{"title":"PREDICTED STRUCTURE AND BINDING MOTIFS OF COLLAGEN α1(XI).","authors":"Owen M McDougal,&nbsp;Lisa R Warner,&nbsp;Chris Mallory,&nbsp;Julia Thom Oxford","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The amino propeptide of collagen α1(XI) (NPP) has been shown to bind glycosaminoglycans and to form a dimer. While these are independent biochemical events, it is likely that dimerization facilitates the interaction with glycosaminoglycans or alternatively, that glycosaminoglycan interaction facilitates the formation of an NPP:NPP dimer. The computer program MODELLER was used to generate a homology model of the collagen α1(XI) NPP monomer using the crystal structure of the closely related noncollagenous-4 (NC4) domain of collagen α1(IX) (PDB:2UUR) as the template. Additionally, a dimer model of collagen α1(XI) NPP domain was created based upon the thrombospondin dimer template (PDB:1Z78). The structure of the dimer created in MODELLER was validated by comparison to a dimer model generated by docking two monomers of PDB:2UUR using ClusPro. Calculations of relative binding energy for the interaction between each collagen α1(XI) NPP model and glycosaminoglycans as ligands was performed using AutoDock4. Computational results support a higher affinity between heparan sulfate and a dimer compared to a monomer. These findings are supported by affinity chromatography experiments in which distinct monomer and dimer peaks were observed. Sequential point mutation studies of the putative binding site (147-KKKITK-152) indicated the importance of the basic lysine residue for binding to heparan sulfate. Two orders of magnitude change in binding affinity was predicted when comparing wild type to the mutation K152A. Experimental data supports the predicted change in affinity.</p>","PeriodicalId":90512,"journal":{"name":"GSTF international journal on bioinformatics & biotechnology","volume":"1 1","pages":"43-48"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193664/pdf/nihms376580.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on bioinformatics & biotechnology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The amino propeptide of collagen α1(XI) (NPP) has been shown to bind glycosaminoglycans and to form a dimer. While these are independent biochemical events, it is likely that dimerization facilitates the interaction with glycosaminoglycans or alternatively, that glycosaminoglycan interaction facilitates the formation of an NPP:NPP dimer. The computer program MODELLER was used to generate a homology model of the collagen α1(XI) NPP monomer using the crystal structure of the closely related noncollagenous-4 (NC4) domain of collagen α1(IX) (PDB:2UUR) as the template. Additionally, a dimer model of collagen α1(XI) NPP domain was created based upon the thrombospondin dimer template (PDB:1Z78). The structure of the dimer created in MODELLER was validated by comparison to a dimer model generated by docking two monomers of PDB:2UUR using ClusPro. Calculations of relative binding energy for the interaction between each collagen α1(XI) NPP model and glycosaminoglycans as ligands was performed using AutoDock4. Computational results support a higher affinity between heparan sulfate and a dimer compared to a monomer. These findings are supported by affinity chromatography experiments in which distinct monomer and dimer peaks were observed. Sequential point mutation studies of the putative binding site (147-KKKITK-152) indicated the importance of the basic lysine residue for binding to heparan sulfate. Two orders of magnitude change in binding affinity was predicted when comparing wild type to the mutation K152A. Experimental data supports the predicted change in affinity.

Abstract Image

预测胶原α1(xi)的结构和结合基序。
虽然这些都是独立的生化事件,但二聚化很可能促进了与糖胺聚糖的相互作用,或者糖胺聚糖的相互作用促进了NPP:NPP二聚体的形成。通过与使用ClusPro对接PDB: 2ur两个单体生成的二聚体模型进行比较,验证了在modeler中创建的二聚体的结构。与单体相比,计算结果支持硫酸肝素和二聚体之间具有更高的亲和力。这些发现得到亲和色谱实验的支持,在亲和色谱实验中观察到不同的单体和二聚体峰。对假定结合位点(147-KKKITK-152)的序列点突变研究表明,碱性赖氨酸残基对与硫酸肝素结合的重要性。当将野生型与突变K152A进行比较时,预计结合亲和力会发生两个数量级的变化。实验数据支持预测的亲和力变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信