Simona Tecco, Stefano Teté, Mario Festa, Felice Festa
{"title":"An in vitro investigation on friction generated by ceramic brackets.","authors":"Simona Tecco, Stefano Teté, Mario Festa, Felice Festa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To compare friction (F) of conventional and ceramic brackets (0.022-inch slot) using a model that tests the sliding of the archwire through 10 aligned brackets.</p><p><strong>Methods: </strong>Polycrystalline alumina brackets (PCAs), PCA brackets with a stainless steel slot (PCA-M), and monocrystalline sapphire brackets (MCS) were tested under elastic ligatures using various archwires in dry and wet (saliva) states. Conventional stainless steel brackets were used as controls.</p><p><strong>Results: </strong>In both dry and wet states, PCA and MCS brackets expressed a statistically significant higher F value with respect to stainless steel and PCA-M brackets when combined with the rectangular archwires (P<.01). PCA brackets showed significantly higher friction than MCS brackets (P<.01) when coupled with 0.014 x 0.025-inch nickel-titanium (Ni-Ti) archwire. SEM analysis showed differences in the surfaces among stainless steel, MCS, PCA-M, and PCA brackets. In the wet state, the mean F values were generally higher than in the dry state.</p><p><strong>Conclusion: </strong>PCA brackets showed significantly higher F than MCS brackets only when combined with 0.014 x 0.025-inch Ni-Ti archwires. Thus, in this study, a 10 aligned-brackets study model showed similar results when compared to a single bracket system except for friction level with 0.014 × 0.025-inch Ni-Ti archwires.</p>","PeriodicalId":87213,"journal":{"name":"World journal of orthodontics","volume":"11 4","pages":"e133-44"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of orthodontics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To compare friction (F) of conventional and ceramic brackets (0.022-inch slot) using a model that tests the sliding of the archwire through 10 aligned brackets.
Methods: Polycrystalline alumina brackets (PCAs), PCA brackets with a stainless steel slot (PCA-M), and monocrystalline sapphire brackets (MCS) were tested under elastic ligatures using various archwires in dry and wet (saliva) states. Conventional stainless steel brackets were used as controls.
Results: In both dry and wet states, PCA and MCS brackets expressed a statistically significant higher F value with respect to stainless steel and PCA-M brackets when combined with the rectangular archwires (P<.01). PCA brackets showed significantly higher friction than MCS brackets (P<.01) when coupled with 0.014 x 0.025-inch nickel-titanium (Ni-Ti) archwire. SEM analysis showed differences in the surfaces among stainless steel, MCS, PCA-M, and PCA brackets. In the wet state, the mean F values were generally higher than in the dry state.
Conclusion: PCA brackets showed significantly higher F than MCS brackets only when combined with 0.014 x 0.025-inch Ni-Ti archwires. Thus, in this study, a 10 aligned-brackets study model showed similar results when compared to a single bracket system except for friction level with 0.014 × 0.025-inch Ni-Ti archwires.