J Hatzfeld, P Batard, A A Cardoso, M L Li, B Panterne, P Sansilvestri, M Ginsbourg, J P Levesque, A Hatzfeld
{"title":"Purification and release from quiescence of umbilical cord blood early progenitors reveal their potential to engraft adults.","authors":"J Hatzfeld, P Batard, A A Cardoso, M L Li, B Panterne, P Sansilvestri, M Ginsbourg, J P Levesque, A Hatzfeld","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Steel factor (SF) increases the frequency of colony formation by CD34+ CD38- cycling cells, but it does not reverse the effect of an autocrine production of transforming growth factor (TGF)-beta 1 by early progenitors of the stem cell compartment. We have used optimal culture conditions supplemented with SF and anti-TGF-beta serum to estimate the proliferative capacity and ability to generate early progenitors in long-term cultures of bone marrow and umbilical cord blood cells. We estimate that the CD34+ CD38- cells from a typical umbilical cord blood sample produce equivalent numbers of granulocyte erythrocyte macrophage megakaryocyte colony-forming units (CFU), twice as many granulocyte-macrophage (GM) CFU, and three times as many erythroid burst-forming units as the same population from an average bone marrow sample used in adult transplantation. These results suggest that umbilical cord blood is a suitable source of cells for adult transplantation.</p>","PeriodicalId":75604,"journal":{"name":"Blood cells","volume":"20 2-3","pages":"430-4; discussion 434-5"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Steel factor (SF) increases the frequency of colony formation by CD34+ CD38- cycling cells, but it does not reverse the effect of an autocrine production of transforming growth factor (TGF)-beta 1 by early progenitors of the stem cell compartment. We have used optimal culture conditions supplemented with SF and anti-TGF-beta serum to estimate the proliferative capacity and ability to generate early progenitors in long-term cultures of bone marrow and umbilical cord blood cells. We estimate that the CD34+ CD38- cells from a typical umbilical cord blood sample produce equivalent numbers of granulocyte erythrocyte macrophage megakaryocyte colony-forming units (CFU), twice as many granulocyte-macrophage (GM) CFU, and three times as many erythroid burst-forming units as the same population from an average bone marrow sample used in adult transplantation. These results suggest that umbilical cord blood is a suitable source of cells for adult transplantation.