High-Performance, Strain-Stable Electromagnetic Shielding Materials Enabled by Magnetic Elastic Fiber Networks Pinning Liquid Metal.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qi Zhang, Yuanzhao Wu, Xilai Bao, Shengbin Li, Xueheng Zhuang, Zidong He, Jinyun Liu, Wuxu Zhang, Shiying Li, Feng Xu, Chuibin Zeng, Chao Hu, Qikui Man, Jie Shang, Yiwei Liu, Run-Wei Li
{"title":"High-Performance, Strain-Stable Electromagnetic Shielding Materials Enabled by Magnetic Elastic Fiber Networks Pinning Liquid Metal.","authors":"Qi Zhang, Yuanzhao Wu, Xilai Bao, Shengbin Li, Xueheng Zhuang, Zidong He, Jinyun Liu, Wuxu Zhang, Shiying Li, Feng Xu, Chuibin Zeng, Chao Hu, Qikui Man, Jie Shang, Yiwei Liu, Run-Wei Li","doi":"10.1002/advs.202510078","DOIUrl":null,"url":null,"abstract":"<p><p>Stretchable electromagnetic interference (EMI) shielding materials are critical for the reliability of wearable electronic devices in complex electromagnetic environments. However, achieving compatibility between ultra-thinness, high shielding efficiency (SE), and excellent dynamic stability remains a major challenge in this field. Here, an ultrathin elastic EMI shielding film (TPU/Fe-LM) is developed by leveraging the magnetoelectric synergy effect and a pinning-interlocking mechanism between ferromagnetic elastic nanofiber networks and the embedded liquid metal (LM), achieving high EMI SE and excellent strain stability. The ultrathin film, with a thickness of 85 µm, exhibits an average EMI SE exceeding 70 dB across a broad frequency range of 0.1 MHz to 40 GHz, with only a 2.59% variation under 100% tensile strain. This superb EMI SE per unit thickness (SSE = 1225 dB mm<sup>-1</sup> @ 100% strain) ranks among the highest reported for stretchable EMI shielding films, highlighting the exceptional application potential. As a proof of concept, the EMI shielding film is integrated into a stretchable capacitive strain sensor for dynamic and static force sensing, achieving a 50-fold enhancement in angle resolution for robotic motion monitoring. This research paves the way for stretchable EMI shielding materials and offers valuable guidance for enhancing electromagnetic protection in wearable electronics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e10078"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202510078","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable electromagnetic interference (EMI) shielding materials are critical for the reliability of wearable electronic devices in complex electromagnetic environments. However, achieving compatibility between ultra-thinness, high shielding efficiency (SE), and excellent dynamic stability remains a major challenge in this field. Here, an ultrathin elastic EMI shielding film (TPU/Fe-LM) is developed by leveraging the magnetoelectric synergy effect and a pinning-interlocking mechanism between ferromagnetic elastic nanofiber networks and the embedded liquid metal (LM), achieving high EMI SE and excellent strain stability. The ultrathin film, with a thickness of 85 µm, exhibits an average EMI SE exceeding 70 dB across a broad frequency range of 0.1 MHz to 40 GHz, with only a 2.59% variation under 100% tensile strain. This superb EMI SE per unit thickness (SSE = 1225 dB mm-1 @ 100% strain) ranks among the highest reported for stretchable EMI shielding films, highlighting the exceptional application potential. As a proof of concept, the EMI shielding film is integrated into a stretchable capacitive strain sensor for dynamic and static force sensing, achieving a 50-fold enhancement in angle resolution for robotic motion monitoring. This research paves the way for stretchable EMI shielding materials and offers valuable guidance for enhancing electromagnetic protection in wearable electronics.

磁性弹性纤维网固定液态金属实现高性能、应变稳定的电磁屏蔽材料。
可拉伸电磁干扰(EMI)屏蔽材料对于复杂电磁环境下可穿戴电子设备的可靠性至关重要。然而,实现超薄、高屏蔽效率(SE)和优异的动态稳定性之间的兼容性仍然是该领域的主要挑战。本文利用铁磁弹性纳米纤维网络与嵌入的液态金属(LM)之间的磁电协同效应和钉钉联锁机制,开发了超薄弹性EMI屏蔽膜(TPU/Fe-LM),实现了高EMI SE和优异的应变稳定性。厚度为85 μ m的超薄薄膜在0.1 MHz至40 GHz的宽频率范围内显示出超过70 dB的平均EMI SE,在100%拉伸应变下仅变化2.59%。这种优异的单位厚度EMI SE (SSE = 1225 dB mm-1 @ 100%应变)在可拉伸EMI屏蔽膜中排名最高,突出了卓越的应用潜力。作为概念验证,电磁干扰屏蔽膜集成到可拉伸的电容应变传感器中,用于动态和静态力传感,实现了机器人运动监测角度分辨率的50倍增强。本研究为可拉伸电磁干扰屏蔽材料的研究铺平了道路,为增强可穿戴电子产品的电磁防护提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信