Artificial-intelligence-guided design of ordered gas diffusion layers for high-performing fuel cells via Bayesian machine learning.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jing Sun, Pengzhu Lin, Lin Zeng, Zixiao Guo, Yuting Jiang, Cailin Xiao, Qinping Jian, Jiayou Ren, Lyuming Pan, Xiaosa Xu, Zheng Li, Lei Wei, Tianshou Zhao
{"title":"Artificial-intelligence-guided design of ordered gas diffusion layers for high-performing fuel cells via Bayesian machine learning.","authors":"Jing Sun, Pengzhu Lin, Lin Zeng, Zixiao Guo, Yuting Jiang, Cailin Xiao, Qinping Jian, Jiayou Ren, Lyuming Pan, Xiaosa Xu, Zheng Li, Lei Wei, Tianshou Zhao","doi":"10.1038/s41467-025-61794-y","DOIUrl":null,"url":null,"abstract":"<p><p>Rational design of gas diffusion layers (GDL) is an example of a long-standing pursuit to increase the power density and reduce the cost of proton exchange membrane fuel cells (PEMFC). However, current state-of-the-art GDLs are designed by trial-and-error, which is a time-consuming endeavor. Here, we propose a closed-loop workflow of Bayesian machine learning approach to guide the design of GDL structures. With artificial neural network accelerating the calculation of anisotropic transport properties of reconstructed GDLs, Bayesian optimization algorithm identifies optimal structures in only 40 steps, maximizing the PEMFC's limiting current density. Results suggest that the optimal porous GDL structure consists of highly orientated fibers with moderate diameters, which is successfully fabricated with a controlled electrospinning technique. The PEMFC demonstrates a high power density of 2.17 W cm<sup>-2</sup> and a limiting current density of ~7200 mA cm<sup>-2</sup>, far exceeding that with commercial GDL (1.33 W cm<sup>-2</sup> and ~2700 mA cm<sup>-2</sup>).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6528"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61794-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rational design of gas diffusion layers (GDL) is an example of a long-standing pursuit to increase the power density and reduce the cost of proton exchange membrane fuel cells (PEMFC). However, current state-of-the-art GDLs are designed by trial-and-error, which is a time-consuming endeavor. Here, we propose a closed-loop workflow of Bayesian machine learning approach to guide the design of GDL structures. With artificial neural network accelerating the calculation of anisotropic transport properties of reconstructed GDLs, Bayesian optimization algorithm identifies optimal structures in only 40 steps, maximizing the PEMFC's limiting current density. Results suggest that the optimal porous GDL structure consists of highly orientated fibers with moderate diameters, which is successfully fabricated with a controlled electrospinning technique. The PEMFC demonstrates a high power density of 2.17 W cm-2 and a limiting current density of ~7200 mA cm-2, far exceeding that with commercial GDL (1.33 W cm-2 and ~2700 mA cm-2).

基于贝叶斯机器学习的高性能燃料电池有序气体扩散层人工智能引导设计
气体扩散层(GDL)的合理设计是质子交换膜燃料电池(PEMFC)提高功率密度和降低成本的一个长期追求。然而,当前最先进的gdl是通过试错来设计的,这是一项耗时的工作。在这里,我们提出了一个闭环工作流程的贝叶斯机器学习方法来指导GDL结构的设计。利用人工神经网络加速计算重构gdl的各向异性输运特性,贝叶斯优化算法只需40步即可识别出最优结构,最大限度地提高了PEMFC的极限电流密度。结果表明,采用可控静电纺丝技术成功制备了中等直径的高取向纤维,从而获得了最佳的多孔GDL结构。PEMFC具有2.17 W cm-2的高功率密度和~7200 mA cm-2的极限电流密度,远远超过了商用GDL (1.33 W cm-2和~2700 mA cm-2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信