Kanglun Yu, Sagar Vyavahare, Dima W Alhamad, Husam Bensreti, Ling Ruan, Anik Tuladhar, Caihong Dai, Joseph C Shaver, Alok Tripathi, Kehong Ding, Rafal Pacholczyk, Marion A Cooley, Roger Zhong, Maribeth H Johnson, Jie Chen, Wendy B Bollag, Carlos M Isales, William D Hill, Mark W Hamrick, Sadanand Fulzele, Meghan E McGee-Lawrence
{"title":"Inhibition of AhR improves cortical bone and skeletal muscle function via preservation of neuromuscular junctions.","authors":"Kanglun Yu, Sagar Vyavahare, Dima W Alhamad, Husam Bensreti, Ling Ruan, Anik Tuladhar, Caihong Dai, Joseph C Shaver, Alok Tripathi, Kehong Ding, Rafal Pacholczyk, Marion A Cooley, Roger Zhong, Maribeth H Johnson, Jie Chen, Wendy B Bollag, Carlos M Isales, William D Hill, Mark W Hamrick, Sadanand Fulzele, Meghan E McGee-Lawrence","doi":"10.1172/jci.insight.192047","DOIUrl":null,"url":null,"abstract":"<p><p>The aryl hydrocarbon receptor (AhR) is proposed to mediate the frailty-promoting effects of the tryptophan metabolite kynurenine (Kyn), which increases with age in mice and humans. The goal of the current study was to test whether administration of pharmacological AhR inhibitors, BAY2416964 and CH-223191, could abrogate musculoskeletal decline in aging mice. Female C57BL/6 mice (18 months old) were treated with vehicle (VEH) or BAY2416964 (30 mg/kg) via daily oral gavage 5 days/week for 8 weeks. A second AhR antagonist, CH-223191, was administered to 16-month-old male and female C57BL/6 mice via intraperitoneal injections (3.3 mg/kg) 3 days/week for 12 weeks. While grip strength declined over time in VEH-treated mice, BAY2416964 preserved grip strength in part by improving integrity of neuromuscular junctions, an effect replicated during in vitro studies with siRNA against AhR. Cortical bone mass was also greater in BAY2416964- than VEH-treated mice. Similarly, CH-223191 treatment improved cortical bone and showed beneficial effects in skeletal muscle, including reducing oxidative stress as compared to VEH-treated animals. Transcriptomic and proteomic data from BAY2416964-treated mice supported a positive impact of BAY2416964 on molecular targets that affect neuromuscular junction function. Taken together, these data support AhR as a therapeutic target for improving musculoskeletal health during aging.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.192047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aryl hydrocarbon receptor (AhR) is proposed to mediate the frailty-promoting effects of the tryptophan metabolite kynurenine (Kyn), which increases with age in mice and humans. The goal of the current study was to test whether administration of pharmacological AhR inhibitors, BAY2416964 and CH-223191, could abrogate musculoskeletal decline in aging mice. Female C57BL/6 mice (18 months old) were treated with vehicle (VEH) or BAY2416964 (30 mg/kg) via daily oral gavage 5 days/week for 8 weeks. A second AhR antagonist, CH-223191, was administered to 16-month-old male and female C57BL/6 mice via intraperitoneal injections (3.3 mg/kg) 3 days/week for 12 weeks. While grip strength declined over time in VEH-treated mice, BAY2416964 preserved grip strength in part by improving integrity of neuromuscular junctions, an effect replicated during in vitro studies with siRNA against AhR. Cortical bone mass was also greater in BAY2416964- than VEH-treated mice. Similarly, CH-223191 treatment improved cortical bone and showed beneficial effects in skeletal muscle, including reducing oxidative stress as compared to VEH-treated animals. Transcriptomic and proteomic data from BAY2416964-treated mice supported a positive impact of BAY2416964 on molecular targets that affect neuromuscular junction function. Taken together, these data support AhR as a therapeutic target for improving musculoskeletal health during aging.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.