Andrew M Shelton, David K Oliver, Ivan P Lazarte, Joachim S Grimstvedt, Ishaan Kapoor, Jake A Swann, Caitlin A Ashcroft, Simon N Williams, Niall Conway, Selma Tir, Amy Robinson, Stuart Peirson, Thomas Akam, Clifford G Kentros, Menno P Witter, Simon J B Butt, Adam Max Packer
{"title":"Single neurons and networks in the mouse claustrum integrate input from widespread cortical sources.","authors":"Andrew M Shelton, David K Oliver, Ivan P Lazarte, Joachim S Grimstvedt, Ishaan Kapoor, Jake A Swann, Caitlin A Ashcroft, Simon N Williams, Niall Conway, Selma Tir, Amy Robinson, Stuart Peirson, Thomas Akam, Clifford G Kentros, Menno P Witter, Simon J B Butt, Adam Max Packer","doi":"10.7554/eLife.98002","DOIUrl":null,"url":null,"abstract":"<p><p>The claustrum is thought to be one of the most highly interconnected forebrain structures, but its organizing principles have yet to be fully explored at the level of single neurons. Here, we investigated the identity, connectivity, and activity of identified claustrum neurons in <i>Mus musculus</i> to understand how the structure's unique convergence of input and divergence of output support binding information streams. We found that neurons in the claustrum communicate with each other across efferent projection-defined modules which were differentially innervated by sensory and frontal cortical areas. Individual claustrum neurons were responsive to inputs from more than one cortical region in a cell-type and projection-specific manner, particularly between areas of frontal cortex. In vivo imaging of claustrum axons revealed responses to both unimodal and multimodal sensory stimuli. Finally, chronic claustrum silencing specifically reduced animals' sensitivity to multimodal stimuli. These findings support the view that the claustrum is a fundamentally integrative structure, consolidating information from around the cortex and redistributing it following local computations.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.98002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The claustrum is thought to be one of the most highly interconnected forebrain structures, but its organizing principles have yet to be fully explored at the level of single neurons. Here, we investigated the identity, connectivity, and activity of identified claustrum neurons in Mus musculus to understand how the structure's unique convergence of input and divergence of output support binding information streams. We found that neurons in the claustrum communicate with each other across efferent projection-defined modules which were differentially innervated by sensory and frontal cortical areas. Individual claustrum neurons were responsive to inputs from more than one cortical region in a cell-type and projection-specific manner, particularly between areas of frontal cortex. In vivo imaging of claustrum axons revealed responses to both unimodal and multimodal sensory stimuli. Finally, chronic claustrum silencing specifically reduced animals' sensitivity to multimodal stimuli. These findings support the view that the claustrum is a fundamentally integrative structure, consolidating information from around the cortex and redistributing it following local computations.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.