Multicellular muscle-tendon bioprinting of mechanically optimized musculoskeletal bioactuators with enhanced force transmission

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Miriam Filippi, Diana Mock, Judith Fuentes, Mike Y. Michelis, Aiste Balciunaite, Pablo Paniagua, Raoul Hopf, Adina Barteld, Selina Eng, Asia Badolato, Jess Snedeker, Maria Guix, Samuel Sanchez, Robert K. Katzschmann
{"title":"Multicellular muscle-tendon bioprinting of mechanically optimized musculoskeletal bioactuators with enhanced force transmission","authors":"Miriam Filippi, Diana Mock, Judith Fuentes, Mike Y. Michelis, Aiste Balciunaite, Pablo Paniagua, Raoul Hopf, Adina Barteld, Selina Eng, Asia Badolato, Jess Snedeker, Maria Guix, Samuel Sanchez, Robert K. Katzschmann","doi":"10.1126/sciadv.adv2628","DOIUrl":null,"url":null,"abstract":"Biohybrid actuators leveraging living muscle tissue offer the potential to replicate natural motion for biomedical and robotic applications. However, challenges such as limited force output and inefficient force transfer at tissue interfaces persist. The myotendinous junction, a specialized interface connecting muscle to the tendon, plays a critical role in efficient force transmission for movement. Engineering muscle-tendon units in vitro is essential for replicating native musculoskeletal functions in biohybrid actuators. Here, we present a three-dimensionally bioprinted system integrating skeletal muscle tissue with tendon-mimicking anchors containing fibroblasts, forming a biomimetic interdigitated myotendinous junction. Using computational models, we optimized muscle geometries to enhance deformation and force generation. The engineered system improved mechanical stability, myofiber maturation, and force transmission, generating contractile forces of up to 350 micronewtons over a 3-month period. This work highlights how biomimetic designs and mechanical optimization can advance bioactuator technologies for applications in medicine and robotics.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"45 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adv2628","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biohybrid actuators leveraging living muscle tissue offer the potential to replicate natural motion for biomedical and robotic applications. However, challenges such as limited force output and inefficient force transfer at tissue interfaces persist. The myotendinous junction, a specialized interface connecting muscle to the tendon, plays a critical role in efficient force transmission for movement. Engineering muscle-tendon units in vitro is essential for replicating native musculoskeletal functions in biohybrid actuators. Here, we present a three-dimensionally bioprinted system integrating skeletal muscle tissue with tendon-mimicking anchors containing fibroblasts, forming a biomimetic interdigitated myotendinous junction. Using computational models, we optimized muscle geometries to enhance deformation and force generation. The engineered system improved mechanical stability, myofiber maturation, and force transmission, generating contractile forces of up to 350 micronewtons over a 3-month period. This work highlights how biomimetic designs and mechanical optimization can advance bioactuator technologies for applications in medicine and robotics.
机械优化肌肉骨骼生物致动器的多细胞肌肉肌腱生物打印,增强力传递
利用活体肌肉组织的生物混合驱动器为生物医学和机器人应用提供了复制自然运动的潜力。然而,组织界面上有限的力输出和低效的力传递等挑战仍然存在。肌腱连接处是连接肌肉和肌腱的特殊界面,在运动的有效力传递中起着关键作用。工程肌肉肌腱单位的体外是必要的复制天然肌肉骨骼功能的生物混合驱动器。在这里,我们提出了一个三维生物打印系统,将骨骼肌组织与含有成纤维细胞的肌腱模拟锚结合起来,形成一个仿生的指间肌腱连接点。利用计算模型,我们优化了肌肉几何形状,以增强变形和力的产生。该工程系统改善了机械稳定性、肌纤维成熟和力传递,在3个月的时间内产生高达350微牛顿的收缩力。这项工作强调了仿生设计和机械优化如何推动生物致动器技术在医学和机器人领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信