Wen-Jun Shen, Ting-Ting Huang, Yuan Cortez, Syed Kashif Zaidi, Sara Arshad, Fredric B Kraemer, Salman Azhar
{"title":"Ablation of steroidogenic superoxide dismutase 2 increases oxidative stress and diminishes steroid hormone production.","authors":"Wen-Jun Shen, Ting-Ting Huang, Yuan Cortez, Syed Kashif Zaidi, Sara Arshad, Fredric B Kraemer, Salman Azhar","doi":"10.1210/endocr/bqaf120","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are a major source of reactive oxygen species, such as superoxide anion (O2●─), contain the enzyme complexes of the electron transport chain and, in steroidogenic tissues, steroid hormone synthesizing P450 enzymes. Superoxide dismutase 2 (SOD2) is the main antioxidant enzyme localized in mitochondria for protection from oxidative insult by enzymatically converting O2●─ into H2O2, which is further degraded into H2O and O2. Although expressed at high levels in steroidogenic tissues and transcriptionally regulated by trophic hormones, SOD2's role in the regulation of steroid hormone production is not fully explored. To address its role in regulating steroidogenesis, we generated adrenal, ovary and testis tissue specific SOD2-deficient mice. Adrenal/testis and adrenal/ovary SOD2-deficient mice exhibited a marked reduction in hormone stimulated corticosterone/testosterone and corticosterone/progesterone secretion in vivo, and hormone- or hormone + high density lipoprotein-stimulated steroid production by steroidogenic tissues in vitro, respectively. RT-qPCR measurements demonstrated dramatic reduction in mRNA levels of steroidogenic P450 enzymes and cholesterol transport protein, StAR. Small, but significant, declines in mRNA levels of certain hydroxysteroid dehydrogenases were also noted. Cellular levels of key biomarkers of oxidative stress revealed that mice with steroidogenic SOD2-deficiency exhibit high oxidative stress. Steroidogenic MLTC-1 cell lines stably overexpressing pairs of mitochondrial antioxidant enzymes, Sod2-catalase, Sod2-glutathione peroxidase-1 or Sod2-glutathione peroxidase-4, showed complete protection against oxidant-mediated suppression of steroidogenesis. These results led us to conclude that SOD2 plays an essential role in the regulation of steroidogenesis and that SOD2-deficiency-induced excessive oxidative stress adversely affects steroid production in mouse adrenal glands, ovary, and testis.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf120","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are a major source of reactive oxygen species, such as superoxide anion (O2●─), contain the enzyme complexes of the electron transport chain and, in steroidogenic tissues, steroid hormone synthesizing P450 enzymes. Superoxide dismutase 2 (SOD2) is the main antioxidant enzyme localized in mitochondria for protection from oxidative insult by enzymatically converting O2●─ into H2O2, which is further degraded into H2O and O2. Although expressed at high levels in steroidogenic tissues and transcriptionally regulated by trophic hormones, SOD2's role in the regulation of steroid hormone production is not fully explored. To address its role in regulating steroidogenesis, we generated adrenal, ovary and testis tissue specific SOD2-deficient mice. Adrenal/testis and adrenal/ovary SOD2-deficient mice exhibited a marked reduction in hormone stimulated corticosterone/testosterone and corticosterone/progesterone secretion in vivo, and hormone- or hormone + high density lipoprotein-stimulated steroid production by steroidogenic tissues in vitro, respectively. RT-qPCR measurements demonstrated dramatic reduction in mRNA levels of steroidogenic P450 enzymes and cholesterol transport protein, StAR. Small, but significant, declines in mRNA levels of certain hydroxysteroid dehydrogenases were also noted. Cellular levels of key biomarkers of oxidative stress revealed that mice with steroidogenic SOD2-deficiency exhibit high oxidative stress. Steroidogenic MLTC-1 cell lines stably overexpressing pairs of mitochondrial antioxidant enzymes, Sod2-catalase, Sod2-glutathione peroxidase-1 or Sod2-glutathione peroxidase-4, showed complete protection against oxidant-mediated suppression of steroidogenesis. These results led us to conclude that SOD2 plays an essential role in the regulation of steroidogenesis and that SOD2-deficiency-induced excessive oxidative stress adversely affects steroid production in mouse adrenal glands, ovary, and testis.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.