A detailed analysis of deep-decoupling/deep-coupling oscillations in the Welander model.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-07-01 DOI:10.1063/5.0262742
John Bailie, Henk A Dijkstra, Bernd Krauskopf
{"title":"A detailed analysis of deep-decoupling/deep-coupling oscillations in the Welander model.","authors":"John Bailie, Henk A Dijkstra, Bernd Krauskopf","doi":"10.1063/5.0262742","DOIUrl":null,"url":null,"abstract":"<p><p>We revisit the conceptual Welander model for the evolution of temperature and salinity in two vertically stacked boxes for surface and deep water, which interact through diffusion and/or convective adjustment. When the switching between them is assumed to be instantaneous, the model exhibits oscillations with phases of weak diffusive mixing (deep-decoupling) interspersed with strong convective mixing (deep-coupling). We present a comprehensive study of oscillations in the Welander model with a smooth, non-instantaneous switching function, where we distinguish four types in terms of their phases of diffusive vs convective mixing and show where they exist in parameter space. The characteristic Welander deep-(de)coupling oscillations still exist, but they require switching that is considerably faster than needed for sustaining oscillatory behavior. We also demonstrate how a gradual freshwater influx can lead to transitions between different types of oscillations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0262742","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the conceptual Welander model for the evolution of temperature and salinity in two vertically stacked boxes for surface and deep water, which interact through diffusion and/or convective adjustment. When the switching between them is assumed to be instantaneous, the model exhibits oscillations with phases of weak diffusive mixing (deep-decoupling) interspersed with strong convective mixing (deep-coupling). We present a comprehensive study of oscillations in the Welander model with a smooth, non-instantaneous switching function, where we distinguish four types in terms of their phases of diffusive vs convective mixing and show where they exist in parameter space. The characteristic Welander deep-(de)coupling oscillations still exist, but they require switching that is considerably faster than needed for sustaining oscillatory behavior. We also demonstrate how a gradual freshwater influx can lead to transitions between different types of oscillations.

详细分析了Welander模型中的深度解耦/深度耦合振荡。
我们重新审视了在表层和深水两个垂直堆叠的盒子中温度和盐度演变的概念Welander模型,它们通过扩散和/或对流调整相互作用。假设两者之间的切换是瞬时的,模型表现为弱扩散混合(深度解耦)与强对流混合(深度耦合)相间的振荡。我们对具有光滑非瞬时开关函数的Welander模型中的振荡进行了全面的研究,其中我们根据扩散与对流混合的相位区分了四种类型,并显示了它们在参数空间中的存在位置。特征韦兰德深(解)耦合振荡仍然存在,但它们需要比维持振荡行为所需的切换速度快得多。我们还展示了淡水的逐渐流入如何导致不同类型的振荡之间的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信