Peter Gödtel, Anna Rösch, Susanne Kirchner, Rabia Elbuga-Ilica, Angelika Seliwjorstow, Olaf Fuhr, Ute Schepers, Zbigniew Pianowski
{"title":"Photoswitchable Fluorescence of Peptide-Based Hemipiperazines Inside of Living Cells.","authors":"Peter Gödtel, Anna Rösch, Susanne Kirchner, Rabia Elbuga-Ilica, Angelika Seliwjorstow, Olaf Fuhr, Ute Schepers, Zbigniew Pianowski","doi":"10.1021/jacs.5c07013","DOIUrl":null,"url":null,"abstract":"<p><p>Photoswitchable fluorophores that can be toggled with visible light are extremely useful for applications in super-resolution imaging. However, most small-molecule photoswitches suffer from poor aqueous solubility and limited biocompatibility and require UV-light activation. Here, we report a novel class of biocompatible, visible-light-responsive fluorophores based on hemipiperazine (HPI) scaffolds with annulated π-systems─indolo-hemipiperazines (IndHPIs) and pyrrolo-hemipiperazines (PyrHPIs). These compounds display large Stokes shifts (up to 135 nm), reversible photoisomerization with up to 620 nm wavelength of light, and, in particular examples, enhanced fluorescence quantum yields and switching thereof, augmented by internal H-bonding. Selected compounds demonstrated excellent thermal stability of their E-isomers, with half-lives of up to ∼13,000 h at 50 °C, and high fatigue resistance under repeated switching cycles. Notably, certain IndHPIs are efficiently internalized by living cells and exhibit a reversible modulation of fluorescence upon irradiation. Further mechanistic studies revealed that <i>in vitro</i> regeneration of the brighter isomer is mediated by glutathione (GSH) likely <i>via</i> a nucleophile-assisted isomerization pathway, providing a possible insight into the cellular behavior of these switches. The exceptional photophysical properties of IndHPIs position them as promising candidates for photoswitchable compounds for application in biological sciences and components of next-generation optical materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c07013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoswitchable fluorophores that can be toggled with visible light are extremely useful for applications in super-resolution imaging. However, most small-molecule photoswitches suffer from poor aqueous solubility and limited biocompatibility and require UV-light activation. Here, we report a novel class of biocompatible, visible-light-responsive fluorophores based on hemipiperazine (HPI) scaffolds with annulated π-systems─indolo-hemipiperazines (IndHPIs) and pyrrolo-hemipiperazines (PyrHPIs). These compounds display large Stokes shifts (up to 135 nm), reversible photoisomerization with up to 620 nm wavelength of light, and, in particular examples, enhanced fluorescence quantum yields and switching thereof, augmented by internal H-bonding. Selected compounds demonstrated excellent thermal stability of their E-isomers, with half-lives of up to ∼13,000 h at 50 °C, and high fatigue resistance under repeated switching cycles. Notably, certain IndHPIs are efficiently internalized by living cells and exhibit a reversible modulation of fluorescence upon irradiation. Further mechanistic studies revealed that in vitro regeneration of the brighter isomer is mediated by glutathione (GSH) likely via a nucleophile-assisted isomerization pathway, providing a possible insight into the cellular behavior of these switches. The exceptional photophysical properties of IndHPIs position them as promising candidates for photoswitchable compounds for application in biological sciences and components of next-generation optical materials.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.