Application and optimization of lightweight visual SLAM in dynamic industrial environment

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhendong Guo , Na Dong , Shuai Liu , Donghui Li , Wai Hung Ip , Kai Leung Yung
{"title":"Application and optimization of lightweight visual SLAM in dynamic industrial environment","authors":"Zhendong Guo ,&nbsp;Na Dong ,&nbsp;Shuai Liu ,&nbsp;Donghui Li ,&nbsp;Wai Hung Ip ,&nbsp;Kai Leung Yung","doi":"10.1016/j.patrec.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing adoption of visual SLAM in industrial automation, maintaining real-time performance and robustness in dynamic environments presents a significant challenge. Traditional SLAM systems often struggle with interference from moving objects and real-time processing on resource-constrained devices, resulting in accuracy issues. This paper introduces a lightweight object detection algorithm that employs spatial-channel decoupling for efficient removal of dynamic objects. It utilizes Region-Adaptive Deformable Convolution (RAD-Conv) to minimize computational complexity and incorporates a lightweight Convolutional Neural Network(CNN) architecture to enhance real-time performance and accuracy. Additionally, a novel loop closure detection method improves localization accuracy by mitigating cumulative errors. Experimental results demonstrate the system’s exceptional real-time performance, accuracy, and robustness in complex industrial scenarios, providing a promising solution for visual SLAM in industrial automation.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 319-327"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002491","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing adoption of visual SLAM in industrial automation, maintaining real-time performance and robustness in dynamic environments presents a significant challenge. Traditional SLAM systems often struggle with interference from moving objects and real-time processing on resource-constrained devices, resulting in accuracy issues. This paper introduces a lightweight object detection algorithm that employs spatial-channel decoupling for efficient removal of dynamic objects. It utilizes Region-Adaptive Deformable Convolution (RAD-Conv) to minimize computational complexity and incorporates a lightweight Convolutional Neural Network(CNN) architecture to enhance real-time performance and accuracy. Additionally, a novel loop closure detection method improves localization accuracy by mitigating cumulative errors. Experimental results demonstrate the system’s exceptional real-time performance, accuracy, and robustness in complex industrial scenarios, providing a promising solution for visual SLAM in industrial automation.
轻量级可视化SLAM在动态工业环境中的应用与优化
随着可视化SLAM在工业自动化中的应用越来越多,在动态环境中保持实时性能和鲁棒性提出了一个重大挑战。传统的SLAM系统经常与移动物体的干扰和资源受限设备上的实时处理作斗争,从而导致准确性问题。本文介绍了一种采用空间信道解耦的轻量目标检测算法,以实现对动态目标的高效去除。它利用区域自适应可变形卷积(RAD-Conv)来最大限度地降低计算复杂度,并结合轻量级卷积神经网络(CNN)架构来提高实时性和准确性。此外,一种新颖的闭环检测方法通过减少累积误差来提高定位精度。实验结果表明,该系统在复杂工业场景下具有优异的实时性、准确性和鲁棒性,为工业自动化中的可视化SLAM提供了一个有前景的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信