Surface Work Function-Induced High-Entropy Solid Electrolyte Interphase Formation for Highly Stable Potassium Metal Anodes

Dr. Lili Song, Qiaoxi Yang, Dr. Yu Yao, Mengran Tan, Renke Li, Dr. Jiaying Liao, Prof. Xiaosi Zhou, Prof. Yan Yu
{"title":"Surface Work Function-Induced High-Entropy Solid Electrolyte Interphase Formation for Highly Stable Potassium Metal Anodes","authors":"Dr. Lili Song,&nbsp;Qiaoxi Yang,&nbsp;Dr. Yu Yao,&nbsp;Mengran Tan,&nbsp;Renke Li,&nbsp;Dr. Jiaying Liao,&nbsp;Prof. Xiaosi Zhou,&nbsp;Prof. Yan Yu","doi":"10.1002/ange.202509252","DOIUrl":null,"url":null,"abstract":"<p>The failure of the solid electrolyte interphase (SEI) layer is a key issue limiting the practical application of potassium metal batteries. Herein, a novel high-entropy SEI layer rich in inorganic components is designed and constructed via in situ electrochemical conversion of the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> interfacial layer on a porous scaffold. Theoretical studies and experimental techniques reveal that the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> heterostructure, with its low work function and weak Sn─O/S bond, significantly enhances reactivity with the electrolyte, thereby facilitating the in situ formation of the high-entropy SEI layer. The in situ generated high-entropy SEI exhibits low surface roughness, low surface potential, fast potassium ion transport characteristics, and excellent mechanical properties (Young's modulus of 20.08 GPa). Leveraging these advantageous properties of the high-entropy SEI, the resulting potassium metal anode achieves an excellent rate performance up to 10 mA cm<sup>−2</sup> in symmetric cells and demonstrates outstanding cycling stability for 2500 h at 0.5 mA cm<sup>−2</sup>. When paired with a perylene-3,4,9,10-tetracarboxylic dianhydride cathode, the potassium metal full battery retains 81.6% of its capacity over 1650 cycles at 10 C. This work underscores a straightforward and effective approach for the establishment of a stable interphase on metallic potassium anodes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202509252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The failure of the solid electrolyte interphase (SEI) layer is a key issue limiting the practical application of potassium metal batteries. Herein, a novel high-entropy SEI layer rich in inorganic components is designed and constructed via in situ electrochemical conversion of the Sn3O4/Sn2S3 interfacial layer on a porous scaffold. Theoretical studies and experimental techniques reveal that the Sn3O4/Sn2S3 heterostructure, with its low work function and weak Sn─O/S bond, significantly enhances reactivity with the electrolyte, thereby facilitating the in situ formation of the high-entropy SEI layer. The in situ generated high-entropy SEI exhibits low surface roughness, low surface potential, fast potassium ion transport characteristics, and excellent mechanical properties (Young's modulus of 20.08 GPa). Leveraging these advantageous properties of the high-entropy SEI, the resulting potassium metal anode achieves an excellent rate performance up to 10 mA cm−2 in symmetric cells and demonstrates outstanding cycling stability for 2500 h at 0.5 mA cm−2. When paired with a perylene-3,4,9,10-tetracarboxylic dianhydride cathode, the potassium metal full battery retains 81.6% of its capacity over 1650 cycles at 10 C. This work underscores a straightforward and effective approach for the establishment of a stable interphase on metallic potassium anodes.

Abstract Image

高稳定金属钾阳极表面功函数诱导的高熵固体电解质界面形成
固体电解质间相(SEI)层失效是制约金属钾电池实际应用的关键问题。本文通过在多孔支架上原位电化学转化Sn3O4/Sn2S3界面层,设计并构建了一种富含无机组分的新型高熵SEI层。理论研究和实验技术表明,Sn3O4/Sn2S3异质结构具有较低的功函数和较弱的Sn─O/S键,显著增强了与电解质的反应性,从而促进了高熵SEI层的原位形成。原位生成的高熵SEI具有低表面粗糙度、低表面电位、快速钾离子传输特性和优异的力学性能(杨氏模量为20.08 GPa)。利用高熵SEI的这些优势特性,所得到的金属钾阳极在对称电池中获得了高达10 mA cm - 2的优异速率性能,并在0.5 mA cm - 2下表现出2500小时的出色循环稳定性。当与苝-3,4,9,10-四羧酸二酐阴极配对时,钾金属电池在10c下循环1650次后仍能保持81.6%的容量。这项工作强调了在金属钾阳极上建立稳定界面的简单有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信