Epitaxially Grown Lattice-Coherent Surface Enabling Superior Mechanical Integrity for High-Voltage LiCoO2 Cathode

Xiang Li, Kexin Wang, Miao Tian, Xu Zhang, Xingyang Wu, Haotian Song, Shuo-Wang Yang, Junwei Zheng, Fanghui Du, Jing Lyu, Zhongkai Hao, Guo Qin Xu
{"title":"Epitaxially Grown Lattice-Coherent Surface Enabling Superior Mechanical Integrity for High-Voltage LiCoO2 Cathode","authors":"Xiang Li,&nbsp;Kexin Wang,&nbsp;Miao Tian,&nbsp;Xu Zhang,&nbsp;Xingyang Wu,&nbsp;Haotian Song,&nbsp;Shuo-Wang Yang,&nbsp;Junwei Zheng,&nbsp;Fanghui Du,&nbsp;Jing Lyu,&nbsp;Zhongkai Hao,&nbsp;Guo Qin Xu","doi":"10.1002/ange.202504221","DOIUrl":null,"url":null,"abstract":"<p>The growing demand for high-energy-density cathode is pushing LiCoO<sub>2</sub> towards 4.6 V operation. However, the structural and interfacial instability of high-voltage LiCoO<sub>2</sub> is exacerbated when the charging cut-off voltage exceeds 4.55 V, resulting in severe mechanical failure and subsequent dramatic capacity decay. Herein, through thermally driven element interdiffusion, a highly durable Co-containing Li-rich phase with the lattice coherence has been epitaxially grown along LiCoO<sub>2</sub> surface, which enhances the intrinsic mechanical integrity of high-voltage LiCoO<sub>2</sub>. Through establishing the lattice-coherent Li-rich surface, adverse side reactions, irreversible phase transition and lattice oxygen loss are significantly inhibited in high-voltage LiCoO<sub>2</sub>, thereby alleviating cracks formation and maintaining the structural integrity. The presence of the Li-rich phase endows LiCoO<sub>2</sub> with the additional capacity and the excellent cycling stability at 4.6 V and even at 4.7 V. This work taps into a new avenue of surface engineering on high-voltage LiCoO<sub>2</sub>.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202504221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for high-energy-density cathode is pushing LiCoO2 towards 4.6 V operation. However, the structural and interfacial instability of high-voltage LiCoO2 is exacerbated when the charging cut-off voltage exceeds 4.55 V, resulting in severe mechanical failure and subsequent dramatic capacity decay. Herein, through thermally driven element interdiffusion, a highly durable Co-containing Li-rich phase with the lattice coherence has been epitaxially grown along LiCoO2 surface, which enhances the intrinsic mechanical integrity of high-voltage LiCoO2. Through establishing the lattice-coherent Li-rich surface, adverse side reactions, irreversible phase transition and lattice oxygen loss are significantly inhibited in high-voltage LiCoO2, thereby alleviating cracks formation and maintaining the structural integrity. The presence of the Li-rich phase endows LiCoO2 with the additional capacity and the excellent cycling stability at 4.6 V and even at 4.7 V. This work taps into a new avenue of surface engineering on high-voltage LiCoO2.

外延生长的晶格相干表面使高压LiCoO2阴极具有优异的机械完整性
对高能量密度阴极的需求不断增长,推动LiCoO2向4.6 V工作。然而,当充电截止电压超过4.55 V时,高压LiCoO2的结构和界面不稳定性加剧,导致严重的机械失效和随后的急剧容量衰减。通过热驱动元素间的相互扩散,在LiCoO2表面外延生长出具有晶格相干性的高耐久的富co - li相,提高了高压LiCoO2的内在机械完整性。通过建立晶格相干富锂表面,在高压LiCoO2中显著抑制了不良副反应、不可逆相变和晶格氧损失,从而减轻了裂纹的形成,保持了结构的完整性。富锂相的存在赋予LiCoO2额外的容量和在4.6 V甚至4.7 V下优异的循环稳定性。这项工作开辟了高压LiCoO2表面工程的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信