Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-06 DOI:10.3390/s25134213
Yaoliang Zhan, Xue Wang, Jin Yang
{"title":"Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring.","authors":"Yaoliang Zhan, Xue Wang, Jin Yang","doi":"10.3390/s25134213","DOIUrl":null,"url":null,"abstract":"<p><p>The electrocardiogram (ECG) signal plays a crucial role in medical diagnosis, home care, and exercise intensity assessment. However, traditional ECG monitoring devices are difficult to blend with users' daily routines due to their lack of portability, poor wearability, and inconvenient electrode usage methods. Therefore, utilizing reusable and cost-effective flexible bioelectrodes (with a signal-to-noise ratio of 33 dB), a miniaturized wearable system (MWS) is proposed for unconstrained ECG monitoring, which holds a size of 65 × 52 × 12 mm<sup>3</sup> and a weight of 69 g. Given these compelling features, this system enables reliable and high-quality ECG signal monitoring in individuals' daily activities, including sitting, walking, and cycling, with the acquired signals exhibiting distinguishable QRS characteristics. Furthermore, an exercise intensity classification model was developed based on ECG characteristics and a fully connected neural network (FCNN) algorithm, with an evaluation accuracy of 98%. These results exhibit the promising potential of the MWS in tracking individuals' physiological signals and assessing exercise intensity.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134213","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocardiogram (ECG) signal plays a crucial role in medical diagnosis, home care, and exercise intensity assessment. However, traditional ECG monitoring devices are difficult to blend with users' daily routines due to their lack of portability, poor wearability, and inconvenient electrode usage methods. Therefore, utilizing reusable and cost-effective flexible bioelectrodes (with a signal-to-noise ratio of 33 dB), a miniaturized wearable system (MWS) is proposed for unconstrained ECG monitoring, which holds a size of 65 × 52 × 12 mm3 and a weight of 69 g. Given these compelling features, this system enables reliable and high-quality ECG signal monitoring in individuals' daily activities, including sitting, walking, and cycling, with the acquired signals exhibiting distinguishable QRS characteristics. Furthermore, an exercise intensity classification model was developed based on ECG characteristics and a fully connected neural network (FCNN) algorithm, with an evaluation accuracy of 98%. These results exhibit the promising potential of the MWS in tracking individuals' physiological signals and assessing exercise intensity.

用于无约束心电监测的柔性生物电极集成小型化系统。
心电图(ECG)信号在医学诊断、家庭护理和运动强度评估中起着至关重要的作用。然而,传统的心电监护设备由于便携性差、可穿戴性差、电极使用方法不方便等原因,难以融入用户的日常生活。因此,利用可重复使用且具有成本效益的柔性生物电极(信噪比为33 dB),提出了一种用于无约束心电监测的小型化可穿戴系统(MWS),其尺寸为65 × 52 × 12 mm3,重量为69 g。鉴于这些引人注目的功能,该系统可以在个人的日常活动中实现可靠和高质量的心电信号监测,包括坐着、走路和骑自行车,所获得的信号显示出可区分的QRS特征。在此基础上,建立了基于心电特征和全连接神经网络(FCNN)算法的运动强度分类模型,评估准确率达到98%。这些结果显示了MWS在跟踪个体生理信号和评估运动强度方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信