{"title":"Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring.","authors":"Yaoliang Zhan, Xue Wang, Jin Yang","doi":"10.3390/s25134213","DOIUrl":null,"url":null,"abstract":"<p><p>The electrocardiogram (ECG) signal plays a crucial role in medical diagnosis, home care, and exercise intensity assessment. However, traditional ECG monitoring devices are difficult to blend with users' daily routines due to their lack of portability, poor wearability, and inconvenient electrode usage methods. Therefore, utilizing reusable and cost-effective flexible bioelectrodes (with a signal-to-noise ratio of 33 dB), a miniaturized wearable system (MWS) is proposed for unconstrained ECG monitoring, which holds a size of 65 × 52 × 12 mm<sup>3</sup> and a weight of 69 g. Given these compelling features, this system enables reliable and high-quality ECG signal monitoring in individuals' daily activities, including sitting, walking, and cycling, with the acquired signals exhibiting distinguishable QRS characteristics. Furthermore, an exercise intensity classification model was developed based on ECG characteristics and a fully connected neural network (FCNN) algorithm, with an evaluation accuracy of 98%. These results exhibit the promising potential of the MWS in tracking individuals' physiological signals and assessing exercise intensity.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134213","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocardiogram (ECG) signal plays a crucial role in medical diagnosis, home care, and exercise intensity assessment. However, traditional ECG monitoring devices are difficult to blend with users' daily routines due to their lack of portability, poor wearability, and inconvenient electrode usage methods. Therefore, utilizing reusable and cost-effective flexible bioelectrodes (with a signal-to-noise ratio of 33 dB), a miniaturized wearable system (MWS) is proposed for unconstrained ECG monitoring, which holds a size of 65 × 52 × 12 mm3 and a weight of 69 g. Given these compelling features, this system enables reliable and high-quality ECG signal monitoring in individuals' daily activities, including sitting, walking, and cycling, with the acquired signals exhibiting distinguishable QRS characteristics. Furthermore, an exercise intensity classification model was developed based on ECG characteristics and a fully connected neural network (FCNN) algorithm, with an evaluation accuracy of 98%. These results exhibit the promising potential of the MWS in tracking individuals' physiological signals and assessing exercise intensity.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.