Efficient Soil Temperature Profile Estimation for Thermoelectric Powered Sensors.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134232
Jiri Konecny, Jaromir Konecny, Kamil Bancik, Miroslav Mikus, Jan Choutka, Jiri Koziorek, Ibrahim A Hameed, Algimantas Valinevicius, Darius Andriukaitis, Michal Prauzek
{"title":"Efficient Soil Temperature Profile Estimation for Thermoelectric Powered Sensors.","authors":"Jiri Konecny, Jaromir Konecny, Kamil Bancik, Miroslav Mikus, Jan Choutka, Jiri Koziorek, Ibrahim A Hameed, Algimantas Valinevicius, Darius Andriukaitis, Michal Prauzek","doi":"10.3390/s25134232","DOIUrl":null,"url":null,"abstract":"<p><p>Internet of Things (IoT) sensors designed for environmental and agricultural purposes can offer significant contributions to creating a sustainable and green environment. However, powering these sensors remains a challenge, and exploiting the temperature difference between air and soil appears to be a promising solution. For energy-harvesting technologies, accurate soil temperature profile data are needed. This study uses meteorological and soil temperature profile data collected in the Czech Republic to train machine learning models based on Polynomial Regression (PR), Support Vector Regression (SVR), and Long Short-Term Memory (LSTM) to predict the soil temperature profile. The results of the study indicate an error of 0.79 °C, which is approximately 10.9% lower than the temperature error reported in state-of-the-art studies. Beyond achieving a lower temperature prediction error, the proposed solution simplifies the input parameters of the model to only ambient temperature and solar irradiance. This improvement significantly reduces the computational costs associated with the regression model, offering a more efficient approach to predicting soil temperature for the purpose of optimizing energy harvesting in IoT sensors.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134232","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) sensors designed for environmental and agricultural purposes can offer significant contributions to creating a sustainable and green environment. However, powering these sensors remains a challenge, and exploiting the temperature difference between air and soil appears to be a promising solution. For energy-harvesting technologies, accurate soil temperature profile data are needed. This study uses meteorological and soil temperature profile data collected in the Czech Republic to train machine learning models based on Polynomial Regression (PR), Support Vector Regression (SVR), and Long Short-Term Memory (LSTM) to predict the soil temperature profile. The results of the study indicate an error of 0.79 °C, which is approximately 10.9% lower than the temperature error reported in state-of-the-art studies. Beyond achieving a lower temperature prediction error, the proposed solution simplifies the input parameters of the model to only ambient temperature and solar irradiance. This improvement significantly reduces the computational costs associated with the regression model, offering a more efficient approach to predicting soil temperature for the purpose of optimizing energy harvesting in IoT sensors.

基于热电传感器的有效土壤温度剖面估计。
为环境和农业目的而设计的物联网(IoT)传感器可以为创造可持续和绿色环境做出重大贡献。然而,为这些传感器供电仍然是一个挑战,利用空气和土壤之间的温差似乎是一个很有前途的解决方案。对于能量收集技术,需要精确的土壤温度剖面数据。本研究使用捷克共和国收集的气象和土壤温度剖面数据,训练基于多项式回归(PR)、支持向量回归(SVR)和长短期记忆(LSTM)的机器学习模型来预测土壤温度剖面。研究结果表明误差为0.79°C,比最新研究报告的温度误差低约10.9%。除了实现较低的温度预测误差外,该方案还将模型的输入参数简化为仅包含环境温度和太阳辐照度。这一改进显著降低了与回归模型相关的计算成本,提供了一种更有效的方法来预测土壤温度,以优化物联网传感器中的能量收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信