Detection and Tracking of Environmental Sensing System for Construction Machinery Autonomous Operation Application.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-06 DOI:10.3390/s25134214
Junyi Chen, Qipeng Cai, Xinhai Hu, Qihuai Chen, Tianliang Lin, Haoling Ren
{"title":"Detection and Tracking of Environmental Sensing System for Construction Machinery Autonomous Operation Application.","authors":"Junyi Chen, Qipeng Cai, Xinhai Hu, Qihuai Chen, Tianliang Lin, Haoling Ren","doi":"10.3390/s25134214","DOIUrl":null,"url":null,"abstract":"<p><p>There are a large number of unstructured scenes and special targets in the construction machinery application scene, which brings greater interference to the environment sensing system for Construction Machinery Autonomous Operation Application. The conventional mature sensing scheme in passenger cars is not fully applicable to construction machinery. By taking the environmental characteristics and operating conditions of construction machinery into consideration, a set of environmental sensing algorithms based on LiDAR for construction machinery scenarios is studied. Real-time target detection of the environment, trajectory tracking, and prediction for dynamic targets are achieved. Decision instructions are provided for upstream detection information for the subsequent behavioral decision-making, motion planning, and other modules. To test the effectiveness of the information exchange between the proposed algorithm and the overall machine interface, the early warning and emergency braking for autonomous operation is implemented. Experiments are carried out through an excavator test platform. The superiority of the optimized detection model is verified through real-time target detection tests at different speeds and under different states. Information exchange between the environmental sensing and the machine interface based on safety warning and braking is achieved.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134214","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There are a large number of unstructured scenes and special targets in the construction machinery application scene, which brings greater interference to the environment sensing system for Construction Machinery Autonomous Operation Application. The conventional mature sensing scheme in passenger cars is not fully applicable to construction machinery. By taking the environmental characteristics and operating conditions of construction machinery into consideration, a set of environmental sensing algorithms based on LiDAR for construction machinery scenarios is studied. Real-time target detection of the environment, trajectory tracking, and prediction for dynamic targets are achieved. Decision instructions are provided for upstream detection information for the subsequent behavioral decision-making, motion planning, and other modules. To test the effectiveness of the information exchange between the proposed algorithm and the overall machine interface, the early warning and emergency braking for autonomous operation is implemented. Experiments are carried out through an excavator test platform. The superiority of the optimized detection model is verified through real-time target detection tests at different speeds and under different states. Information exchange between the environmental sensing and the machine interface based on safety warning and braking is achieved.

环境传感系统在工程机械自主作业中的检测与跟踪应用。
工程机械应用场景中存在大量的非结构化场景和特殊目标,这给工程机械自主操作应用环境感知系统带来了较大的干扰。传统成熟的乘用车传感方案并不完全适用于工程机械。结合工程机械的环境特点和运行条件,研究了一套基于激光雷达的工程机械场景环境感知算法。实现了环境目标的实时检测、轨迹跟踪和动态目标的预测。为后续的行为决策、运动规划等模块提供上游检测信息的决策指令。为了验证该算法与整机接口之间信息交换的有效性,实现了自动驾驶的预警和紧急制动。实验通过挖掘机试验平台进行。通过不同速度和不同状态下的实时目标检测试验,验证了优化后的检测模型的优越性。实现了基于安全预警和制动的环境传感与机器接口之间的信息交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信