Data-Driven Image-Based Protocol for Brain PET Image Harmonization.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134230
Eva Štokelj, Urban Simončič, For The Alzheimer's Disease Neuroimaging Initiative
{"title":"Data-Driven Image-Based Protocol for Brain PET Image Harmonization.","authors":"Eva Štokelj, Urban Simončič, For The Alzheimer's Disease Neuroimaging Initiative","doi":"10.3390/s25134230","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative FDG-PET brain imaging across multiple centers is challenged by inter-scanner variability, impacting the comparability of neuroimaging data. This study proposes a data-driven image-based harmonization protocol to address these discrepancies without relying on traditional phantom scans. The protocol uses spatially normalized FDG-PET brain images to estimate scanner-specific Gaussian smoothing filters, optimizing parameters via the structural similarity index (SSIM). Validation was performed using images from cognitively normal individuals and Alzheimer's disease patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results demonstrated robust harmonization at moderate target resolutions (8 and 10 mm FWHM), with filter estimates consistently within 1.2 mm of phantom-derived ground truths. However, at higher resolutions (6 mm FWHM), discrepancies reached up to 3 mm, reflecting reduced accuracy. These deviations were particularly evident for high-resolution scanners like HRRT, likely due to elevated noise levels and smaller sample sizes. The presented harmonization method effectively reduces inter-scanner variability in retrospective FDG-PET studies, especially valuable when phantom scans are unavailable. Nonetheless, the current limitations at finer resolutions underline the necessity for methodological refinements to meet the demands of evolving high-resolution PET imaging technologies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134230","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative FDG-PET brain imaging across multiple centers is challenged by inter-scanner variability, impacting the comparability of neuroimaging data. This study proposes a data-driven image-based harmonization protocol to address these discrepancies without relying on traditional phantom scans. The protocol uses spatially normalized FDG-PET brain images to estimate scanner-specific Gaussian smoothing filters, optimizing parameters via the structural similarity index (SSIM). Validation was performed using images from cognitively normal individuals and Alzheimer's disease patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results demonstrated robust harmonization at moderate target resolutions (8 and 10 mm FWHM), with filter estimates consistently within 1.2 mm of phantom-derived ground truths. However, at higher resolutions (6 mm FWHM), discrepancies reached up to 3 mm, reflecting reduced accuracy. These deviations were particularly evident for high-resolution scanners like HRRT, likely due to elevated noise levels and smaller sample sizes. The presented harmonization method effectively reduces inter-scanner variability in retrospective FDG-PET studies, especially valuable when phantom scans are unavailable. Nonetheless, the current limitations at finer resolutions underline the necessity for methodological refinements to meet the demands of evolving high-resolution PET imaging technologies.

基于数据驱动图像的脑PET图像协调协议。
多中心FDG-PET定量脑成像受到扫描仪间可变性的挑战,影响了神经成像数据的可比性。本研究提出了一种数据驱动的基于图像的协调协议来解决这些差异,而不依赖于传统的幻影扫描。该方案使用空间归一化的FDG-PET脑图像来估计扫描仪特定的高斯平滑滤波器,并通过结构相似指数(SSIM)优化参数。使用认知正常个体和阿尔茨海默病神经影像学倡议(ADNI)数据库中的阿尔茨海默病患者的图像进行验证。结果显示,在中等目标分辨率下(8和10毫米FWHM),滤波器估计一致在1.2毫米的幻影衍生的地面真相。然而,在更高的分辨率(6毫米FWHM)下,差异达到3毫米,反映出精度降低。对于像HRRT这样的高分辨率扫描仪,这些偏差尤其明显,可能是由于噪声水平升高和样本量较小。所提出的协调方法有效地减少了FDG-PET回顾性研究中扫描仪间的差异,特别是在无法使用幻像扫描时。尽管如此,目前在更精细分辨率上的限制强调了方法改进的必要性,以满足不断发展的高分辨率PET成像技术的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信