Automated Sidewalk Surface Detection Using Wearable Accelerometry and Deep Learning.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134228
Do-Eun Park, Jong-Hoon Youn, Teuk-Seob Song
{"title":"Automated Sidewalk Surface Detection Using Wearable Accelerometry and Deep Learning.","authors":"Do-Eun Park, Jong-Hoon Youn, Teuk-Seob Song","doi":"10.3390/s25134228","DOIUrl":null,"url":null,"abstract":"<p><p>Walking-friendly cities not only promote health and environmental benefits but also play crucial roles in urban development and local economic revitalization. Typically, pedestrian interviews and surveys are used to evaluate walkability. However, these methods can be costly to implement at scale, as they demand considerable time and resources. To address the limitations in current methods for evaluating pedestrian pathways, we propose a novel approach utilizing wearable sensors and deep learning. This new method provides benefits in terms of efficiency and cost-effectiveness while ensuring a more objective and consistent evaluation of sidewalk surfaces. In the proposed method, we used wearable accelerometers to capture participants' acceleration along the vertical (<i>V</i>), anterior-posterior (AP), and medio-lateral (ML) axes. This data is then transformed into the frequency domain using Fast Fourier Transform (FFT), a Kalman filter, a low-pass filter, and a moving average filter. A deep learning model is subsequently utilized to classify the conditions of the sidewalk surfaces using this transformed data. The experimental results indicate that the proposed model achieves a notable accuracy rate of 95.17%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134228","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Walking-friendly cities not only promote health and environmental benefits but also play crucial roles in urban development and local economic revitalization. Typically, pedestrian interviews and surveys are used to evaluate walkability. However, these methods can be costly to implement at scale, as they demand considerable time and resources. To address the limitations in current methods for evaluating pedestrian pathways, we propose a novel approach utilizing wearable sensors and deep learning. This new method provides benefits in terms of efficiency and cost-effectiveness while ensuring a more objective and consistent evaluation of sidewalk surfaces. In the proposed method, we used wearable accelerometers to capture participants' acceleration along the vertical (V), anterior-posterior (AP), and medio-lateral (ML) axes. This data is then transformed into the frequency domain using Fast Fourier Transform (FFT), a Kalman filter, a low-pass filter, and a moving average filter. A deep learning model is subsequently utilized to classify the conditions of the sidewalk surfaces using this transformed data. The experimental results indicate that the proposed model achieves a notable accuracy rate of 95.17%.

使用可穿戴加速度计和深度学习的自动人行道表面检测。
步行友好型城市不仅促进健康和环境效益,而且在城市发展和地方经济振兴中发挥着至关重要的作用。通常,行人访谈和调查用于评估步行性。然而,大规模实现这些方法的成本很高,因为它们需要大量的时间和资源。为了解决当前行人路径评估方法的局限性,我们提出了一种利用可穿戴传感器和深度学习的新方法。这种新方法在效率和成本效益方面提供了好处,同时确保对人行道表面进行更客观和一致的评估。在提出的方法中,我们使用可穿戴加速度计捕捉参与者沿垂直(V)、前后(AP)和中外侧(ML)轴的加速度。然后使用快速傅里叶变换(FFT)、卡尔曼滤波器、低通滤波器和移动平均滤波器将这些数据转换到频域。随后使用深度学习模型使用转换后的数据对人行道表面的状况进行分类。实验结果表明,该模型的准确率达到了95.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信