{"title":"CMOMO: a deep multi-objective optimization framework for constrained molecular multi-property optimization.","authors":"Xin Xia, Yajie Zhang, Xiangxiang Zeng, Xingyi Zhang, Chunhou Zheng, Yansen Su","doi":"10.1093/bib/bbaf335","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular optimization, aiming to identify molecules with improved properties from a huge chemical search space, is a critical step in drug development. This task is challenging due to the need to optimize multiple properties while adhering to stringent drug-like criteria. Recently, numerous effective artificial intelligence methods have been proposed for molecular optimization. However, most of them neglect the constraints in molecular optimization, thereby limiting the development of high-quality molecules that simultaneously satisfy property objectives and constraint compliance. To address this issue, we proposed a deep multi-objective optimization framework, termed CMOMO, for constrained molecular multi-property optimization. The proposed CMOMO divides the optimization process into two stages, which enables it to use a dynamic constraint handling strategy to balance multi-property optimization and constraint satisfaction. Besides, a latent vector fragmentation based evolutionary reproduction strategy is designed to generate promising molecules effectively. Experimental results on two benchmark tasks show that the proposed CMOMO outperforms five state-of-the-art methods to obtain more successfully optimized molecules with multiple desired properties and satisfying drug-like constraints. Moreover, the superiority of CMOMO is verified on two practical tasks, including a potential protein-ligand optimization task of 4LDE protein, which is the structure of $\\beta $2-adrenoceptor GPCR receptor, and a potential inhibitor optimization task of glycogen synthase kinase-3$\\beta $ target (GSK3$\\beta $). Notably, CMOMO demonstrates a two-fold improvement in success rate for the GSK3$\\beta $ optimization task, successfully identifying molecules with favorable bioactivity, drug-likeness, synthetic accessibility, and adherence to structural constraints.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf335","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular optimization, aiming to identify molecules with improved properties from a huge chemical search space, is a critical step in drug development. This task is challenging due to the need to optimize multiple properties while adhering to stringent drug-like criteria. Recently, numerous effective artificial intelligence methods have been proposed for molecular optimization. However, most of them neglect the constraints in molecular optimization, thereby limiting the development of high-quality molecules that simultaneously satisfy property objectives and constraint compliance. To address this issue, we proposed a deep multi-objective optimization framework, termed CMOMO, for constrained molecular multi-property optimization. The proposed CMOMO divides the optimization process into two stages, which enables it to use a dynamic constraint handling strategy to balance multi-property optimization and constraint satisfaction. Besides, a latent vector fragmentation based evolutionary reproduction strategy is designed to generate promising molecules effectively. Experimental results on two benchmark tasks show that the proposed CMOMO outperforms five state-of-the-art methods to obtain more successfully optimized molecules with multiple desired properties and satisfying drug-like constraints. Moreover, the superiority of CMOMO is verified on two practical tasks, including a potential protein-ligand optimization task of 4LDE protein, which is the structure of $\beta $2-adrenoceptor GPCR receptor, and a potential inhibitor optimization task of glycogen synthase kinase-3$\beta $ target (GSK3$\beta $). Notably, CMOMO demonstrates a two-fold improvement in success rate for the GSK3$\beta $ optimization task, successfully identifying molecules with favorable bioactivity, drug-likeness, synthetic accessibility, and adherence to structural constraints.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.