Investigation of the flexural capacity of glue-laminated Bambusa spinosa Roxb. beams using an experimental procedure and finite element analysis

Sanjie Dutt A. Kumar , Franklyn F. Manggapis , Joe Robert Paul G. Lucena , Aaron Paul I. Carabbacan
{"title":"Investigation of the flexural capacity of glue-laminated Bambusa spinosa Roxb. beams using an experimental procedure and finite element analysis","authors":"Sanjie Dutt A. Kumar ,&nbsp;Franklyn F. Manggapis ,&nbsp;Joe Robert Paul G. Lucena ,&nbsp;Aaron Paul I. Carabbacan","doi":"10.1016/j.bamboo.2025.100183","DOIUrl":null,"url":null,"abstract":"<div><div>We examined the flexural capacity of glue-laminated bamboo (GLB) beams made from <em>Bambusa spinosa</em> through experimental four-point bending tests and Finite Element Analysis (FEA) to evaluate mechanical performance, validate numerical models and develop moment capacity equations. We demonstrate that <em>Bambusa spinosa</em> meets structural requirements for engineered bamboo, with GLB100 and GLB125 achieving flexural strengths of 146.78 MPa and 130.66 MPa, respectively. An adhesive shear bond strength of 15.45 MPa ensured durability and structural integrity, while FEA predictions closely aligned with experimental results, confirming the accuracy of numerical modeling in structural analysis. This reinforces the viability of GLB beams as a sustainable alternative to traditional materials, contributing to reducing environmental impact in construction. Economic feasibility, building code limitations and standardization challenges are hindering widespread adoption, necessitating further research on optimizing lamination techniques, adhesive selection, and long-term durability under diverse environmental conditions. This will enhance the applicability of GLB beams in real-world structural designs. Our findings support the advancement of engineering standards for GLB beams, and promoting <em>Bambusa spinosa</em> as a high-strength, eco-friendly solution for sustainable construction.</div></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"12 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277313912500062X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examined the flexural capacity of glue-laminated bamboo (GLB) beams made from Bambusa spinosa through experimental four-point bending tests and Finite Element Analysis (FEA) to evaluate mechanical performance, validate numerical models and develop moment capacity equations. We demonstrate that Bambusa spinosa meets structural requirements for engineered bamboo, with GLB100 and GLB125 achieving flexural strengths of 146.78 MPa and 130.66 MPa, respectively. An adhesive shear bond strength of 15.45 MPa ensured durability and structural integrity, while FEA predictions closely aligned with experimental results, confirming the accuracy of numerical modeling in structural analysis. This reinforces the viability of GLB beams as a sustainable alternative to traditional materials, contributing to reducing environmental impact in construction. Economic feasibility, building code limitations and standardization challenges are hindering widespread adoption, necessitating further research on optimizing lamination techniques, adhesive selection, and long-term durability under diverse environmental conditions. This will enhance the applicability of GLB beams in real-world structural designs. Our findings support the advancement of engineering standards for GLB beams, and promoting Bambusa spinosa as a high-strength, eco-friendly solution for sustainable construction.
胶合竹材抗弯性能的研究。采用梁的实验程序和有限元分析
通过试验四点弯曲试验和有限元分析(FEA),研究了由竹材制成的胶合竹材(GLB)梁的抗弯能力,以评估其力学性能,验证数值模型并建立弯矩能力方程。结果表明,竹材GLB100和GLB125的抗弯强度分别达到146.78 MPa和130.66 MPa,符合工程竹的结构要求。粘接剪切强度为15.45 MPa,保证了结构的耐久性和完整性,而有限元预测结果与实验结果吻合较好,证实了数值模拟在结构分析中的准确性。这加强了GLB梁作为传统材料的可持续替代品的可行性,有助于减少建筑对环境的影响。经济可行性、建筑规范限制和标准化挑战阻碍了广泛采用,因此需要进一步研究优化层压技术、粘合剂选择以及在不同环境条件下的长期耐久性。这将增强GLB梁在实际结构设计中的适用性。我们的研究结果支持了GLB梁工程标准的进步,并促进了竹木作为一种高强度、环保的可持续建筑解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信