Rate-induced phenomena in dynamical systems with attracting limit cycles.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-07-01 DOI:10.1063/5.0251098
George Chappelle, Martin Rasmussen
{"title":"Rate-induced phenomena in dynamical systems with attracting limit cycles.","authors":"George Chappelle, Martin Rasmussen","doi":"10.1063/5.0251098","DOIUrl":null,"url":null,"abstract":"<p><p>We study the behavior of dynamical systems under a time-dependent change of an external parameter. We are interested in phenomena induced by the parameter changing sufficiently quickly, and we refer to these as rate-induced phenomena. We investigate such rate-induced phenomena in continuous-time planar dynamical systems, where the underlying fixed-parameter autonomous dynamics have limit cycles attractors, extending the work of Alkhayuon and Ashwin [Chaos 28(3), 033608 (2018)]. We discover new phenomena of rate-induced phase sensitivity, where the rate at which the parameter changes can trigger finite-time unpredictability in the dynamics. We also find that this new phenomenon interacts in an interesting way with the established notion of rate-induced tipping.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the behavior of dynamical systems under a time-dependent change of an external parameter. We are interested in phenomena induced by the parameter changing sufficiently quickly, and we refer to these as rate-induced phenomena. We investigate such rate-induced phenomena in continuous-time planar dynamical systems, where the underlying fixed-parameter autonomous dynamics have limit cycles attractors, extending the work of Alkhayuon and Ashwin [Chaos 28(3), 033608 (2018)]. We discover new phenomena of rate-induced phase sensitivity, where the rate at which the parameter changes can trigger finite-time unpredictability in the dynamics. We also find that this new phenomenon interacts in an interesting way with the established notion of rate-induced tipping.

具有吸引极限环的动力系统中的速率诱导现象。
我们研究了外部参数随时间变化时动力系统的行为。我们感兴趣的是由参数变化足够快引起的现象,我们把这些现象称为速率引起的现象。我们在连续时间平面动力系统中研究了这种速率诱导现象,其中潜在的固定参数自治动力学具有极限环吸引子,扩展了Alkhayuon和Ashwin的工作[Chaos 28(3), 033608(2018)]。我们发现了速率诱导相位敏感的新现象,其中参数变化的速率可以触发动力学中的有限时间不可预测性。我们还发现,这种新现象以一种有趣的方式与既定的费率诱导小费概念相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信