Tailoring Ni, Nb in commercial FeCo-V soft magnetic alloys to promote strength-coercivity synergy

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuan Zhao, Zhenjie Guan, Mingyuan Ma, Li Liu, Xueyin Sun, Jiantang Jiang, Wenzhu Shao, Liang Zhen
{"title":"Tailoring Ni, Nb in commercial FeCo-V soft magnetic alloys to promote strength-coercivity synergy","authors":"Xuan Zhao, Zhenjie Guan, Mingyuan Ma, Li Liu, Xueyin Sun, Jiantang Jiang, Wenzhu Shao, Liang Zhen","doi":"10.1016/j.jmst.2025.05.062","DOIUrl":null,"url":null,"abstract":"High yield strength is crucial for soft magnetic materials (SMMs) applied for high-speed power generators to maximize rotation speed and load. Traditional SMMs are therefore developed with “unclean” microstructures, namely, to increase obstacles like solid solution atoms, grain boundary, or second-phase particle-to-pin dislocation motion and further increase the yield strength. This alloy design strategy poses a significant challenge for coercivity, yet SMMs serving in generators must reduce energy consumption owing to hysteresis losses. This work presents a comprehensive investigation of composition and annealing process optimization to overcome the trade-off between coercivity and strength. Nb and Ni elements addition introduces solid solute atoms and precipitation. Solid solute atoms promote yield strength through solid solution strengthening and coercivity through forming internal stress to reverse domain orientation. Hard magnetic NbCo<sub>3</sub> second-phase particle has a higher anisotropy constant <em>K</em><sub>1</sub> than the matrix, significantly hinders magnetic domain wall motion while has little effect on dislocation movement, resulting larger increment in coercivity than yield strength. The small-sized precipitations through annealing were considered. Proper annealing process can also obtain γ-fiber texture, low dislocation, and high grain boundary density to elevate yield strength and mining coercivity. The developed FeCo-V-Ni-0.3Nb alloy demonstrates impressive high yield strengths of 764 MPa and low coercivity of 198 A m<sup>−1</sup>. Compared to commercial HiperCo50 HS alloy, the present alloy exhibits ∼29% yield strength increase and ∼60% coercivity decrease. We also proposed a model <span><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">H</mi><mtext is=\"true\">cp</mtext></msub><mo is=\"true\" linebreak=\"goodbreak\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">δ</mi><mtext is=\"true\">particle</mtext></msub><msub is=\"true\"><mi is=\"true\">V</mi><mi is=\"true\" mathvariant=\"normal\">p</mi></msub></mrow><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">+</mo><mtext is=\"true\">exp</mtext><mo is=\"true\">(</mo><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">δ</mi><mtext is=\"true\">matrix</mtext></msub><mo is=\"true\">−</mo><mi is=\"true\">A</mi><mi is=\"true\">a</mi><mi is=\"true\">D</mi><mroot is=\"true\"><mrow is=\"true\"><mi is=\"true\">π</mi><mo is=\"true\">/</mo><mn is=\"true\">6</mn><msub is=\"true\"><mi is=\"true\">V</mi><mi is=\"true\" mathvariant=\"normal\">p</mi></msub></mrow><mn is=\"true\">3</mn></mroot></mrow><mo is=\"true\">)</mo></mrow></mfrac></mrow></math></span> to estimate coercivity increment for magnetic second-phase particles.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"21 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.05.062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High yield strength is crucial for soft magnetic materials (SMMs) applied for high-speed power generators to maximize rotation speed and load. Traditional SMMs are therefore developed with “unclean” microstructures, namely, to increase obstacles like solid solution atoms, grain boundary, or second-phase particle-to-pin dislocation motion and further increase the yield strength. This alloy design strategy poses a significant challenge for coercivity, yet SMMs serving in generators must reduce energy consumption owing to hysteresis losses. This work presents a comprehensive investigation of composition and annealing process optimization to overcome the trade-off between coercivity and strength. Nb and Ni elements addition introduces solid solute atoms and precipitation. Solid solute atoms promote yield strength through solid solution strengthening and coercivity through forming internal stress to reverse domain orientation. Hard magnetic NbCo3 second-phase particle has a higher anisotropy constant K1 than the matrix, significantly hinders magnetic domain wall motion while has little effect on dislocation movement, resulting larger increment in coercivity than yield strength. The small-sized precipitations through annealing were considered. Proper annealing process can also obtain γ-fiber texture, low dislocation, and high grain boundary density to elevate yield strength and mining coercivity. The developed FeCo-V-Ni-0.3Nb alloy demonstrates impressive high yield strengths of 764 MPa and low coercivity of 198 A m−1. Compared to commercial HiperCo50 HS alloy, the present alloy exhibits ∼29% yield strength increase and ∼60% coercivity decrease. We also proposed a model Hcp=δparticleVp1+exp(δmatrixAaDπ/6Vp3) to estimate coercivity increment for magnetic second-phase particles.

Abstract Image

在商用FeCo-V软磁合金中裁剪Ni、Nb以促进强度-矫顽力协同作用
高屈服强度是用于高速发电机的软磁材料实现转速和负载最大化的关键。因此,传统的smm具有“不清洁”的微观结构,即增加固溶体原子,晶界或第二相颗粒到针位错运动等障碍,并进一步提高屈服强度。这种合金设计策略对矫顽力提出了重大挑战,但在发电机中使用的smm必须减少由于迟滞损失而产生的能量消耗。这项工作提出了一个全面的调查组成和退火工艺优化,以克服矫顽力和强度之间的权衡。Nb和Ni元素的加入引入了固体溶质原子和沉淀。固体溶质原子通过固溶强化来提高屈服强度,通过形成内应力来逆转畴取向来提高矫顽力。硬磁NbCo3二相颗粒具有比基体更高的各向异性常数K1,显著阻碍磁畴壁运动,而对位错运动影响不大,导致矫顽力增量大于屈服强度增量。考虑了退火过程中产生的微小析出。适当的退火工艺还可以获得γ纤维织构、低位错和高晶界密度,从而提高屈服强度和挖掘矫顽力。FeCo-V-Ni-0.3Nb合金的屈服强度为764 MPa,矫顽力为198 A m−1。与商用HiperCo50 HS合金相比,该合金的屈服强度提高了~ 29%,矫顽力降低了~ 60%。我们还提出了一个模型Hcp=δparticleVp1+exp(δmatrix−AaDπ/6Vp3)来估计磁性第二相粒子的矫顽力增量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信