Spatial histology and gene-expression representation and generative learning via online self-distillation contrastive learning.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Qianyi Yan, Xuan Li, Jiangnan Cui, Jianming Rong, Jingsong Zhang, Pingting Gao, Yaochen Xu, Fufang Qiu, Chunman Zuo
{"title":"Spatial histology and gene-expression representation and generative learning via online self-distillation contrastive learning.","authors":"Qianyi Yan, Xuan Li, Jiangnan Cui, Jianming Rong, Jingsong Zhang, Pingting Gao, Yaochen Xu, Fufang Qiu, Chunman Zuo","doi":"10.1093/bib/bbaf317","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics quantifies spatial molecular profiles alongside histology, enabling computational prediction of spatial gene expression distribution directly from whole slide images. Inspired by image-to-text alignment and generation, we introduce Magic, a self-training contrastive learning model designed for histology-to-gene expression prediction. Magic (i) employs contrastive learning to derive shared embeddings for histology and gene expression while utilizing a momentum-based module to generate pseudo-targets to reduce the impact of noise; and (ii) leverages a transformer-based decoder to predict the expression of 300 genes based on histological features. Trained on 75 760 spots from 56 breast cancer slices and validated on 11 026 spots from five independent slices, Magic outperforms existing methods in aligning and generating histology-gene expression data, achieving a 10% improvement over the second-best approach. Furthermore, Magic demonstrates robust generalization, effectively predicting gene expression in colorectal cancer samples and The Cancer Genome Atlas (TCGA) datasets through zero-shot learning. Notably, Magic's predicted gene expression captures interpatient differences, highlighting its strong potential for clinical applications.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf317","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics quantifies spatial molecular profiles alongside histology, enabling computational prediction of spatial gene expression distribution directly from whole slide images. Inspired by image-to-text alignment and generation, we introduce Magic, a self-training contrastive learning model designed for histology-to-gene expression prediction. Magic (i) employs contrastive learning to derive shared embeddings for histology and gene expression while utilizing a momentum-based module to generate pseudo-targets to reduce the impact of noise; and (ii) leverages a transformer-based decoder to predict the expression of 300 genes based on histological features. Trained on 75 760 spots from 56 breast cancer slices and validated on 11 026 spots from five independent slices, Magic outperforms existing methods in aligning and generating histology-gene expression data, achieving a 10% improvement over the second-best approach. Furthermore, Magic demonstrates robust generalization, effectively predicting gene expression in colorectal cancer samples and The Cancer Genome Atlas (TCGA) datasets through zero-shot learning. Notably, Magic's predicted gene expression captures interpatient differences, highlighting its strong potential for clinical applications.

空间组织学和基因表达表征与在线自蒸馏对比学习的生成学习。
空间转录组学与组织学一起量化空间分子谱,可以直接从整个幻灯片图像计算预测空间基因表达分布。受图像到文本对齐和生成的启发,我们引入了Magic,这是一种用于组织到基因表达预测的自我训练对比学习模型。Magic (i)采用对比学习来获得组织学和基因表达的共享嵌入,同时利用基于动量的模块来生成伪目标,以减少噪声的影响;(ii)利用基于转换器的解码器根据组织学特征预测300个基因的表达。Magic对来自56个乳腺癌切片的75 760个点进行了训练,并对来自5个独立切片的11 026个点进行了验证,在对齐和生成组织学基因表达数据方面优于现有方法,比第二好的方法提高了10%。此外,Magic展示了强大的泛化能力,通过零学习有效预测结直肠癌样本和癌症基因组图谱(TCGA)数据集的基因表达。值得注意的是,Magic预测的基因表达捕捉到了患者之间的差异,凸显了其在临床应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信