{"title":"Data simulation to optimize frameworks for genome-wide association studies in diverse populations.","authors":"Jacquiline W Mugo, Nicola Mulder, Emile R Chimusa","doi":"10.3389/fgene.2025.1559496","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-genome or genome-wide association studies (GWAS) have become a fundamental part of modern genetic studies and methods for dissecting the genetic architecture of common traits based on common polymorphisms in random populations. It is hoped that there would be many potential uses of these identified variants, including a better understanding of the pathogenesis of traits, disease risk prediction, discovery of biomarkers, and clinical prediction of drug treatments for populations and global health. Questions have been raised about whether associations that are largely discovered in European ancestry populations are replicable in diverse populations, can inform medical decision-making globally, and how efficiently current GWAS tools perform in populations of high genetic diversity, multi-wave genetic admixture, and low linkage disequilibrium, such as African populations. Here, we discuss some of the challenges in association mapping and leverage genomic data simulation to mimic structured African, European, and multi-way admixed populations to evaluate the replicability of association signals from current state-of-the-art GWAS tools. We use the results to discuss optimized frameworks for the analysis of GWAS data in diverse populations. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1559496"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1559496","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-genome or genome-wide association studies (GWAS) have become a fundamental part of modern genetic studies and methods for dissecting the genetic architecture of common traits based on common polymorphisms in random populations. It is hoped that there would be many potential uses of these identified variants, including a better understanding of the pathogenesis of traits, disease risk prediction, discovery of biomarkers, and clinical prediction of drug treatments for populations and global health. Questions have been raised about whether associations that are largely discovered in European ancestry populations are replicable in diverse populations, can inform medical decision-making globally, and how efficiently current GWAS tools perform in populations of high genetic diversity, multi-wave genetic admixture, and low linkage disequilibrium, such as African populations. Here, we discuss some of the challenges in association mapping and leverage genomic data simulation to mimic structured African, European, and multi-way admixed populations to evaluate the replicability of association signals from current state-of-the-art GWAS tools. We use the results to discuss optimized frameworks for the analysis of GWAS data in diverse populations. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.