ToxACoL: an endpoint-aware and task-focused compound representation learning paradigm for acute toxicity assessment.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiang Lu, Lianlian Wu, Ruijiang Li, Mengxuan Wan, Jun Yang, Peng Zan, Hui Bai, Song He, Xiaochen Bo
{"title":"ToxACoL: an endpoint-aware and task-focused compound representation learning paradigm for acute toxicity assessment.","authors":"Jiang Lu, Lianlian Wu, Ruijiang Li, Mengxuan Wan, Jun Yang, Peng Zan, Hui Bai, Song He, Xiaochen Bo","doi":"10.1038/s41467-025-60989-7","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-species acute toxicity assessment forms the basis for chemical classification, labelling and risk management. Existing deep learning methods struggle with diverse experimental conditions, imbalanced data, and scarce target data, hindering their ability to reveal endpoint associations and accurately predict data-scarce endpoints. Here we propose a machine learning paradigm, Adjoint Correlation Learning, for multi-condition acute toxicity assessment (ToxACoL) to address these challenges. ToxACoL models endpoint associations via graph topology and achieves knowledge transfer via graph convolution. The adjoint correlation mechanism encodes compounds and endpoints synchronously, yielding endpoint-aware and task-focused representations. Comprehensive analyses demonstrate that ToxACoL yields 43%-87% improvements for data-scarce human endpoints, while reducing training data by 70% to 80%. Visualization of the learned top-level representation interprets structural alert mechanisms. Filled-in toxicity values highlight potential for extrapolating animal results to humans. Finally, we deploy ToxACoL as a free web platform for rapid prediction of multi-condition acute toxicities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5992"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60989-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-species acute toxicity assessment forms the basis for chemical classification, labelling and risk management. Existing deep learning methods struggle with diverse experimental conditions, imbalanced data, and scarce target data, hindering their ability to reveal endpoint associations and accurately predict data-scarce endpoints. Here we propose a machine learning paradigm, Adjoint Correlation Learning, for multi-condition acute toxicity assessment (ToxACoL) to address these challenges. ToxACoL models endpoint associations via graph topology and achieves knowledge transfer via graph convolution. The adjoint correlation mechanism encodes compounds and endpoints synchronously, yielding endpoint-aware and task-focused representations. Comprehensive analyses demonstrate that ToxACoL yields 43%-87% improvements for data-scarce human endpoints, while reducing training data by 70% to 80%. Visualization of the learned top-level representation interprets structural alert mechanisms. Filled-in toxicity values highlight potential for extrapolating animal results to humans. Finally, we deploy ToxACoL as a free web platform for rapid prediction of multi-condition acute toxicities.

ToxACoL:一个终点意识和任务为中心的急性毒性评估的复合表征学习范式。
多物种急性毒性评估是化学品分类、标签和风险管理的基础。现有的深度学习方法与不同的实验条件、不平衡的数据和稀缺的目标数据作斗争,阻碍了它们揭示端点关联和准确预测数据稀缺端点的能力。在这里,我们提出了一种机器学习范式,伴随相关学习,用于多条件急性毒性评估(ToxACoL)来解决这些挑战。ToxACoL通过图拓扑建模端点关联,通过图卷积实现知识转移。伴随关联机制同步编码化合物和端点,产生端点感知和以任务为中心的表示。综合分析表明,对于数据稀缺的人类端点,ToxACoL的效率提高了43%-87%,同时将训练数据减少了70% - 80%。学习到的顶层表示的可视化解释了结构警报机制。填入的毒性值强调了将动物实验结果外推到人类身上的可能性。最后,我们部署ToxACoL作为一个免费的网络平台,用于快速预测多条件急性毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信