Jiang Lu, Lianlian Wu, Ruijiang Li, Mengxuan Wan, Jun Yang, Peng Zan, Hui Bai, Song He, Xiaochen Bo
{"title":"ToxACoL: an endpoint-aware and task-focused compound representation learning paradigm for acute toxicity assessment.","authors":"Jiang Lu, Lianlian Wu, Ruijiang Li, Mengxuan Wan, Jun Yang, Peng Zan, Hui Bai, Song He, Xiaochen Bo","doi":"10.1038/s41467-025-60989-7","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-species acute toxicity assessment forms the basis for chemical classification, labelling and risk management. Existing deep learning methods struggle with diverse experimental conditions, imbalanced data, and scarce target data, hindering their ability to reveal endpoint associations and accurately predict data-scarce endpoints. Here we propose a machine learning paradigm, Adjoint Correlation Learning, for multi-condition acute toxicity assessment (ToxACoL) to address these challenges. ToxACoL models endpoint associations via graph topology and achieves knowledge transfer via graph convolution. The adjoint correlation mechanism encodes compounds and endpoints synchronously, yielding endpoint-aware and task-focused representations. Comprehensive analyses demonstrate that ToxACoL yields 43%-87% improvements for data-scarce human endpoints, while reducing training data by 70% to 80%. Visualization of the learned top-level representation interprets structural alert mechanisms. Filled-in toxicity values highlight potential for extrapolating animal results to humans. Finally, we deploy ToxACoL as a free web platform for rapid prediction of multi-condition acute toxicities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5992"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60989-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-species acute toxicity assessment forms the basis for chemical classification, labelling and risk management. Existing deep learning methods struggle with diverse experimental conditions, imbalanced data, and scarce target data, hindering their ability to reveal endpoint associations and accurately predict data-scarce endpoints. Here we propose a machine learning paradigm, Adjoint Correlation Learning, for multi-condition acute toxicity assessment (ToxACoL) to address these challenges. ToxACoL models endpoint associations via graph topology and achieves knowledge transfer via graph convolution. The adjoint correlation mechanism encodes compounds and endpoints synchronously, yielding endpoint-aware and task-focused representations. Comprehensive analyses demonstrate that ToxACoL yields 43%-87% improvements for data-scarce human endpoints, while reducing training data by 70% to 80%. Visualization of the learned top-level representation interprets structural alert mechanisms. Filled-in toxicity values highlight potential for extrapolating animal results to humans. Finally, we deploy ToxACoL as a free web platform for rapid prediction of multi-condition acute toxicities.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.