Development of a Glassblown Micro-Hemispherical Shell Resonator With a Co-Fabricated Electrical Actuation Mechanism

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenqiang Wei;Rang Cui;Qi Cai;Renxin Wang;Huiliang Cao
{"title":"Development of a Glassblown Micro-Hemispherical Shell Resonator With a Co-Fabricated Electrical Actuation Mechanism","authors":"Wenqiang Wei;Rang Cui;Qi Cai;Renxin Wang;Huiliang Cao","doi":"10.1109/LED.2025.3562657","DOIUrl":null,"url":null,"abstract":"This letter presents a glassblown micro-hemispherical shell resonator (<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> HSR), consisting of a micro-hemispherical shell and a ring-shaped electrode. The blow-molding process is employed to enable the simultaneous fabrication of the electrode and the resonator shell, thereby eliminating assembly errors inherent in traditional discrete assembly methods. Additionally, an innovative S-shaped metal lead is introduced to prevent metal tearing. The experimental results indicate that the surface roughness of the resonator is measured at only 0.217 nm. The resonant frequencies of the drive mode and sense mode are 3.4876 MHz and 3.4891 MHz respectively. Additionally, the Q factor in a 1 Pa vacuum environment is approximately 200 times greater than that at atmospheric pressure. This study offers a novel approach for advancing research on <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> HSRs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 7","pages":"1199-1202"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971385/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a glassblown micro-hemispherical shell resonator ( $\mu $ HSR), consisting of a micro-hemispherical shell and a ring-shaped electrode. The blow-molding process is employed to enable the simultaneous fabrication of the electrode and the resonator shell, thereby eliminating assembly errors inherent in traditional discrete assembly methods. Additionally, an innovative S-shaped metal lead is introduced to prevent metal tearing. The experimental results indicate that the surface roughness of the resonator is measured at only 0.217 nm. The resonant frequencies of the drive mode and sense mode are 3.4876 MHz and 3.4891 MHz respectively. Additionally, the Q factor in a 1 Pa vacuum environment is approximately 200 times greater than that at atmospheric pressure. This study offers a novel approach for advancing research on $\mu $ HSRs.
玻璃吹制微半球壳谐振腔的研制及电致动机构
本文介绍了一种玻璃吹制的微半球壳谐振器($\mu $ HSR),它由一个微半球壳和一个环形电极组成。采用吹塑工艺实现了电极和谐振腔壳体的同时制造,从而消除了传统离散装配方法所固有的装配误差。此外,一个创新的s形金属引线引入,以防止金属撕裂。实验结果表明,谐振腔的表面粗糙度仅为0.217 nm。驱动模式和检测模式的谐振频率分别为3.4876 MHz和3.4891 MHz。此外,在1pa真空环境中的Q因子大约是大气压下的200倍。本研究为推进$\mu $高铁的研究提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信