MetaRGBX-Net: RGB Sensitivity and Cross-Talk Prediction in CMOS Image Sensor

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
JangHyeon Lee;ByoungGyu Kim;Yongkeun Lee
{"title":"MetaRGBX-Net: RGB Sensitivity and Cross-Talk Prediction in CMOS Image Sensor","authors":"JangHyeon Lee;ByoungGyu Kim;Yongkeun Lee","doi":"10.1109/LED.2025.3562529","DOIUrl":null,"url":null,"abstract":"The CMOS image sensor (CIS) underpins optical applications, enabling high-resolution imaging across the visible and near-infrared spectra. Advances in nanofabrication have enhanced pixel density, improving resolution, but as pixel dimensions approach the diffraction limit, maintaining optical sensitivity without performance trade-offs remains challenging. Nanophotonic solutions, like nanophotonic-based color routers, address these limitations. This study builds on MetaRGB-Net, a machine learning framework achieving 98% prediction accuracy in optimizing RGB sensitivity. We introduce MetaRGBX-Net, which employs separate neural networks to optimize both RGB sensitivity and cross-talk, achieving 95% and 98% prediction accuracy, respectively. This enables precise optimization of critical parameters and serves as a foundation for Bayesian optimization to refine metasurface designs, ensuring efficient light routing through RGB channels while minimizing cross-talk. MetaRGBX-Net streamlines metasurface design and provides a scalable foundation for next-generation CIS applications in IoT, biomedical imaging, and environmental monitoring.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 7","pages":"1235-1238"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10970058/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The CMOS image sensor (CIS) underpins optical applications, enabling high-resolution imaging across the visible and near-infrared spectra. Advances in nanofabrication have enhanced pixel density, improving resolution, but as pixel dimensions approach the diffraction limit, maintaining optical sensitivity without performance trade-offs remains challenging. Nanophotonic solutions, like nanophotonic-based color routers, address these limitations. This study builds on MetaRGB-Net, a machine learning framework achieving 98% prediction accuracy in optimizing RGB sensitivity. We introduce MetaRGBX-Net, which employs separate neural networks to optimize both RGB sensitivity and cross-talk, achieving 95% and 98% prediction accuracy, respectively. This enables precise optimization of critical parameters and serves as a foundation for Bayesian optimization to refine metasurface designs, ensuring efficient light routing through RGB channels while minimizing cross-talk. MetaRGBX-Net streamlines metasurface design and provides a scalable foundation for next-generation CIS applications in IoT, biomedical imaging, and environmental monitoring.
CMOS图像传感器的RGB灵敏度和串扰预测
CMOS图像传感器(CIS)支持光学应用,实现可见光和近红外光谱的高分辨率成像。纳米制造的进步提高了像素密度,提高了分辨率,但随着像素尺寸接近衍射极限,在不牺牲性能的情况下保持光学灵敏度仍然是一个挑战。纳米光子解决方案,如基于纳米光子的彩色路由器,解决了这些限制。这项研究建立在MetaRGB-Net上,这是一个机器学习框架,在优化RGB灵敏度方面实现了98%的预测精度。我们引入了MetaRGBX-Net,它采用单独的神经网络来优化RGB灵敏度和串扰,分别达到95%和98%的预测准确率。这可以精确优化关键参数,并作为贝叶斯优化的基础,以改进元表面设计,确保通过RGB通道的有效光路由,同时最大限度地减少串扰。MetaRGBX-Net简化了元表面设计,并为物联网、生物医学成像和环境监测中的下一代CIS应用提供了可扩展的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信