CRISPR/Cas9-mediated germline mutagenesis in the subsocial parasitoid wasp, Sclerodermus guani.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zi Ye, Guanzhen Fan, Yun Wei, Li Li, Feng Liu
{"title":"CRISPR/Cas9-mediated germline mutagenesis in the subsocial parasitoid wasp, Sclerodermus guani.","authors":"Zi Ye, Guanzhen Fan, Yun Wei, Li Li, Feng Liu","doi":"10.1111/imb.13014","DOIUrl":null,"url":null,"abstract":"<p><p>The ectoparasitoid wasp Sclerodermus guani (Hymenoptera: Bethylidae), as a subsocial insect, is widely applied in biological control against beetle vectors of pine wood nematodes. Despite significant advances in behavioural research, functional genetics in S. guani remains underdeveloped due to the absence of efficient gene manipulation tools. In this study, we employed CRISPR-mediated mutagenesis to achieve germline gene knockout targeting the eye pigment-associated gene kynurenine 3-monooxygenase (KMO). Phylogenetic analysis revealed that S. guani KMO shares a close relationship with its homologue in Prorops nasuta (Hymenoptera: Bethylidae). Two single-guide RNAs (sgRNAs), coupled with Cas9 protein with and without nuclear localisation signal (NLS) were tested. Both sgRNAs induced specific in vitro DNA cleavage and in vivo heritable indels at the target genomic loci. Homozygous null mutant females and males exhibit a white-eye phenotype, which was identified during pupal stage. Optimal editing efficiency in vivo was achieved using the Cas9-NLS variant. Given the complication of germline gene editing in eusocial Hymenopterans, the application of CRISPR in the subsocial parasitoid wasp S. guani provides an accessible research platform for the molecular evolution of insect sociality.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.13014","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ectoparasitoid wasp Sclerodermus guani (Hymenoptera: Bethylidae), as a subsocial insect, is widely applied in biological control against beetle vectors of pine wood nematodes. Despite significant advances in behavioural research, functional genetics in S. guani remains underdeveloped due to the absence of efficient gene manipulation tools. In this study, we employed CRISPR-mediated mutagenesis to achieve germline gene knockout targeting the eye pigment-associated gene kynurenine 3-monooxygenase (KMO). Phylogenetic analysis revealed that S. guani KMO shares a close relationship with its homologue in Prorops nasuta (Hymenoptera: Bethylidae). Two single-guide RNAs (sgRNAs), coupled with Cas9 protein with and without nuclear localisation signal (NLS) were tested. Both sgRNAs induced specific in vitro DNA cleavage and in vivo heritable indels at the target genomic loci. Homozygous null mutant females and males exhibit a white-eye phenotype, which was identified during pupal stage. Optimal editing efficiency in vivo was achieved using the Cas9-NLS variant. Given the complication of germline gene editing in eusocial Hymenopterans, the application of CRISPR in the subsocial parasitoid wasp S. guani provides an accessible research platform for the molecular evolution of insect sociality.

CRISPR/ cas9介导的瓜硬皮亚社会性寄生蜂种系突变
瓜硬皮蜂(Sclerodermus guani)是一种亚社会性昆虫,被广泛应用于松材线虫的生物防治。尽管行为研究取得了重大进展,但由于缺乏有效的基因操作工具,功能遗传学仍然不发达。在本研究中,我们采用crispr介导的诱变技术,实现了针对眼色素相关基因kynurenine 3-monooxygenase (KMO)的种系基因敲除。系统发育分析表明,瓜氏小蜂与膜翅目蜜蜂科的同系物亲缘关系较近。测试了两种单导rna (sgRNAs),分别与Cas9蛋白偶联,带和不带核定位信号(NLS)。这两种sgRNAs在靶基因组位点诱导特异性体外DNA切割和体内可遗传诱导。纯合子零突变体雌雄均表现出白眼表型,这种表型在蛹期被发现。使用Cas9-NLS变体在体内实现了最佳的编辑效率。考虑到膜翅目昆虫生殖系基因编辑的复杂性,CRISPR在亚社会性拟寄生蜂瓜尼蜂中的应用为昆虫社会性分子进化提供了一个可访问的研究平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信