Characterisation and expression analysis of extracellular superoxide dismutases of Protohermes xanthodes navás (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos exposure.
Xi Wen, Yun Lu, Jie Yang, Yue Zhang, Xingrui Huang, Jie Zou, Mengqing Zhang, Xihui Wang, Wei Zhao, Xinglong Huang, Zhengwei Wu
{"title":"Characterisation and expression analysis of extracellular superoxide dismutases of <i>Protohermes xanthodes</i> navás (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos exposure.","authors":"Xi Wen, Yun Lu, Jie Yang, Yue Zhang, Xingrui Huang, Jie Zou, Mengqing Zhang, Xihui Wang, Wei Zhao, Xinglong Huang, Zhengwei Wu","doi":"10.1017/S0007485325100151","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (<i>PxSOD3</i> and <i>PxSOD5</i>) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect <i>Protohermes xanthodes</i> (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in <i>P. xanthodes</i> larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in <i>P. xanthodes</i> larvae. Furthermore, <i>PxSOD3</i> and <i>PxSOD5</i> expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of <i>P. xanthodes</i> by reducing the gene expression and catalytic activity of extracellular SODs.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":" ","pages":"1-9"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0007485325100151","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.
期刊介绍:
Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.