Yuan Lin , Yang Bai , Alejandro Martin-Avila , Wei Li , Xujun Wu , Edward Ziff , Wen-Biao Gan
{"title":"Abnormal calcium activity and CREB phosphorylation are associated with motor memory impairment in presenilin-1 mutant knock-in mice","authors":"Yuan Lin , Yang Bai , Alejandro Martin-Avila , Wei Li , Xujun Wu , Edward Ziff , Wen-Biao Gan","doi":"10.1016/j.ceca.2025.103048","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Presenilin (PS) gene mutations cause memory impairment in early-onset familial Alzheimer’s disease (FAD), but the underlying mechanisms remain unclear.</div></div><div><h3>Methods</h3><div>We examined the effects of the PS1 M146V FAD mutation on motor learning, motor learning-related changes in neuronal Ca<sup>2+</sup>activity and CREB phosphorylation in the primary motor cortex.</div></div><div><h3>Results</h3><div>We found that PS1 M146V knock-in mice displayed long-term deficiencies in motor skill learning. Ca<sup>2+</sup> levels are altered in a cortical layer and neuron type-specific manner in PS1 mutant mice as compared to WT control mice. Notably, while running caused a significant increase of CREB phosphorylation in WT mice, it led to a significant decrease of CREB phosphorylation in layer 5 neurons of mutant mice.</div></div><div><h3>Discussion</h3><div>These findings suggest that alterations of Ca<sup>2+</sup> activity and CREB phosphorylation in deep cortical layers are early events leading to memory impairment in the PS1 mutation-related familial form of AD.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"130 ","pages":"Article 103048"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416025000570","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Presenilin (PS) gene mutations cause memory impairment in early-onset familial Alzheimer’s disease (FAD), but the underlying mechanisms remain unclear.
Methods
We examined the effects of the PS1 M146V FAD mutation on motor learning, motor learning-related changes in neuronal Ca2+activity and CREB phosphorylation in the primary motor cortex.
Results
We found that PS1 M146V knock-in mice displayed long-term deficiencies in motor skill learning. Ca2+ levels are altered in a cortical layer and neuron type-specific manner in PS1 mutant mice as compared to WT control mice. Notably, while running caused a significant increase of CREB phosphorylation in WT mice, it led to a significant decrease of CREB phosphorylation in layer 5 neurons of mutant mice.
Discussion
These findings suggest that alterations of Ca2+ activity and CREB phosphorylation in deep cortical layers are early events leading to memory impairment in the PS1 mutation-related familial form of AD.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes