Willis Kwun Hei Ho, Qin Zhang, Fariza Zhorabe, Jiaxiang Yan, Yutian Gu, Shujun Wang, Changqing Yi, Yu Zhang, Mo Yang
{"title":"A buoyant plasmonic microbubble-based SERS sensing platform for amyloid-beta protein detection in Alzheimer's disease.","authors":"Willis Kwun Hei Ho, Qin Zhang, Fariza Zhorabe, Jiaxiang Yan, Yutian Gu, Shujun Wang, Changqing Yi, Yu Zhang, Mo Yang","doi":"10.1039/d5tb00632e","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid-β (Aβ) plaques are a key pathological hallmark of Alzheimer's disease (AD), highlighting the need for highly sensitive bioassays for Aβ detection to enable AD diagnosis. Here, we synthesized a buoyant plasmonic substrate composed of polyvinyl alcohol microbubbles (MBs) decorated with <i>in situ</i>-reduced gold nanoparticles (Au NPs). Benefiting from its inherent buoyancy and near-infrared plasmonic properties, the Au/MB substrate serves as an ideal platform for biomolecular sensing <i>via</i> the surface-enhanced Raman spectroscopy (SERS) technique. Compared to conventional flat SERS substrates, the three-dimensional (3D) curved surface of the Au/MB substrate significantly increases the effective sensing area, while its inherent buoyancy facilitates the efficient removal of unbound targets, thereby enhancing detection specificity. By functionalizing Au/MB substrates with copper ions (Cu<sup>2+</sup>) and 4-mercaptobenzoic acid (4-MBA), we achieved sensitive detection of AD-related Aβ proteins. In the presence of the target analyte, the interaction between Aβ proteins and Cu<sup>2+</sup> induces molecular deformation and orientation changes in 4-MBA, leading to distinct spectral changes in the SERS signals. The results demonstrate that the developed Au/MB-based SERS sensor enables sensitive detection of Aβ<sub>1-40</sub> oligomers with a sensitivity as low as 10<sup>-9</sup> M. Therefore, this work not only establishes a foundational framework for designing buoyant plasmonic substrate-based SERS sensing platform but also paves the way for the quantitative detection of disease-associated protein biomarkers, contributing to advancements in AD diagnostics.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00632e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid-β (Aβ) plaques are a key pathological hallmark of Alzheimer's disease (AD), highlighting the need for highly sensitive bioassays for Aβ detection to enable AD diagnosis. Here, we synthesized a buoyant plasmonic substrate composed of polyvinyl alcohol microbubbles (MBs) decorated with in situ-reduced gold nanoparticles (Au NPs). Benefiting from its inherent buoyancy and near-infrared plasmonic properties, the Au/MB substrate serves as an ideal platform for biomolecular sensing via the surface-enhanced Raman spectroscopy (SERS) technique. Compared to conventional flat SERS substrates, the three-dimensional (3D) curved surface of the Au/MB substrate significantly increases the effective sensing area, while its inherent buoyancy facilitates the efficient removal of unbound targets, thereby enhancing detection specificity. By functionalizing Au/MB substrates with copper ions (Cu2+) and 4-mercaptobenzoic acid (4-MBA), we achieved sensitive detection of AD-related Aβ proteins. In the presence of the target analyte, the interaction between Aβ proteins and Cu2+ induces molecular deformation and orientation changes in 4-MBA, leading to distinct spectral changes in the SERS signals. The results demonstrate that the developed Au/MB-based SERS sensor enables sensitive detection of Aβ1-40 oligomers with a sensitivity as low as 10-9 M. Therefore, this work not only establishes a foundational framework for designing buoyant plasmonic substrate-based SERS sensing platform but also paves the way for the quantitative detection of disease-associated protein biomarkers, contributing to advancements in AD diagnostics.