Daniele Pergolini, Alessandro Del Vecchio, Mohamed Mohsen, Veronica Cerullo, Cinzia Angileri, Eduardo Troiani, Paolo Visca, Barbara Antoniani, Umberto Romeo, Gaspare Palaia
{"title":"Histological Evaluation of Oral Soft Tissue Biopsy by Dual-Wavelength Diode Laser: An Ex Vivo Study.","authors":"Daniele Pergolini, Alessandro Del Vecchio, Mohamed Mohsen, Veronica Cerullo, Cinzia Angileri, Eduardo Troiani, Paolo Visca, Barbara Antoniani, Umberto Romeo, Gaspare Palaia","doi":"10.3390/dj13060265","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Diode lasers are valuable in oral surgery due to their excellent hemostasis, minimum post-operative pain, and minimally invasive procedures. A dual-wavelength diode laser in dentistry combines two distinct wavelengths, typically 450 nm and 808 nm, to provide a versatile approach to soft tissue procedures. This ex vivo study investigated the quantity of thermal effects of a dual-wavelength diode laser on porcine lingual mucosa to determine the optimal laser parameters for oral soft tissue biopsies and to improve the reliability of histological evaluation. The presence of thermal damage in the prelesional margins may compromise the diagnostic accuracy, particularly in cases of suspected malignancy. <b>Methods:</b> Thirty-six porcine lingual mucosa samples were excised using a diode laser (Wiser 3, Doctor Smile) in continuous wave (CW) and pulsed wave (PW) modes at average powers of 2, 3, and 4 W. The samples, preserved in 5% buffered formalin, underwent histological evaluation to measure epithelial and connective tissue damage. <b>Results:</b> The study demonstrated variable thermal effects depending on the laser mode and power settings. Minimal epithelial damage (0.62 mm) was observed at 2 W CW, while maximum damage (3.12 mm) occurred at 4 W pulsed wave (PW). Connective tissue exhibited slightly greater damage than epithelial tissue, with minimal damage (0.53 mm) at 4 W CW and maximum damage (3.19 mm) at 4 W pulsed wave (PW). Statistical analyses were performed using t-tests and ANOVA and revealed significant differences in tissue damage between certain groups, highlighting the impact of laser parameters on thermal effects. <b>Conclusions:</b> The dual-wavelength diode laser seems to have good surgical properties and is suitable for managing complex clinical cases. Although the low power average showed minimal thermal damage, for the importance of the diagnosis of suspected lesions of malignancy, a 2 mm prelesional margin should be maintained.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13060265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diode lasers are valuable in oral surgery due to their excellent hemostasis, minimum post-operative pain, and minimally invasive procedures. A dual-wavelength diode laser in dentistry combines two distinct wavelengths, typically 450 nm and 808 nm, to provide a versatile approach to soft tissue procedures. This ex vivo study investigated the quantity of thermal effects of a dual-wavelength diode laser on porcine lingual mucosa to determine the optimal laser parameters for oral soft tissue biopsies and to improve the reliability of histological evaluation. The presence of thermal damage in the prelesional margins may compromise the diagnostic accuracy, particularly in cases of suspected malignancy. Methods: Thirty-six porcine lingual mucosa samples were excised using a diode laser (Wiser 3, Doctor Smile) in continuous wave (CW) and pulsed wave (PW) modes at average powers of 2, 3, and 4 W. The samples, preserved in 5% buffered formalin, underwent histological evaluation to measure epithelial and connective tissue damage. Results: The study demonstrated variable thermal effects depending on the laser mode and power settings. Minimal epithelial damage (0.62 mm) was observed at 2 W CW, while maximum damage (3.12 mm) occurred at 4 W pulsed wave (PW). Connective tissue exhibited slightly greater damage than epithelial tissue, with minimal damage (0.53 mm) at 4 W CW and maximum damage (3.19 mm) at 4 W pulsed wave (PW). Statistical analyses were performed using t-tests and ANOVA and revealed significant differences in tissue damage between certain groups, highlighting the impact of laser parameters on thermal effects. Conclusions: The dual-wavelength diode laser seems to have good surgical properties and is suitable for managing complex clinical cases. Although the low power average showed minimal thermal damage, for the importance of the diagnosis of suspected lesions of malignancy, a 2 mm prelesional margin should be maintained.