[Implementation of artificial intelligence (AI) in healthcare: historical development, current technologies and challenges].

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Jill von Conta, Merlin Engelke, Fin H Bahnsen, Amin Dada, Elisabeth Liebert, Felix Nensa, Jens Kleesiek, Anke Diehl
{"title":"[Implementation of artificial intelligence (AI) in healthcare: historical development, current technologies and challenges].","authors":"Jill von Conta, Merlin Engelke, Fin H Bahnsen, Amin Dada, Elisabeth Liebert, Felix Nensa, Jens Kleesiek, Anke Diehl","doi":"10.1007/s00103-025-04086-6","DOIUrl":null,"url":null,"abstract":"<p><p>The historical development of artificial intelligence (AI) in healthcare since the 1960s shows a transformation from simple rule-based systems to complex, data-driven approaches. Early applications focused on decision support, while innovative systems use neural networks and machine learning to recognise patterns in large datasets. The integration of AI technologies in medicine has given rise to diverse areas of application, which can be categorized into preventive AI, diagnostic AI, AI-assisted therapeutic, and administrative AI. Preventive AI analyses risk factors to enable early interventions, while diagnostic AI contributes to faster and more accurate diagnoses. AI-assisted therapy supports individualized treatments, such as personalized medication. Administrative AI optimizes processes such as appointment scheduling, resource management and billing.Despite their potential, AI systems face challenges. These include the fragmentation of health data, a lack of standardisation, data protection concerns and algorithmic biases. The establishment of interoperable data infrastructures and the development of ethical guidelines are crucial to overcoming these hurdles. Future trends include the further development of foundation models (large AI models that are based on broad datasets and can be used in a variety of ways), the integration of structured and unstructured data and greater personalisation in medicine. In the long term, AI can improve the quality and efficiency of healthcare. However, this requires close co-operation between research, industry and politics in order to ensure safe and sustainable implementation.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04086-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The historical development of artificial intelligence (AI) in healthcare since the 1960s shows a transformation from simple rule-based systems to complex, data-driven approaches. Early applications focused on decision support, while innovative systems use neural networks and machine learning to recognise patterns in large datasets. The integration of AI technologies in medicine has given rise to diverse areas of application, which can be categorized into preventive AI, diagnostic AI, AI-assisted therapeutic, and administrative AI. Preventive AI analyses risk factors to enable early interventions, while diagnostic AI contributes to faster and more accurate diagnoses. AI-assisted therapy supports individualized treatments, such as personalized medication. Administrative AI optimizes processes such as appointment scheduling, resource management and billing.Despite their potential, AI systems face challenges. These include the fragmentation of health data, a lack of standardisation, data protection concerns and algorithmic biases. The establishment of interoperable data infrastructures and the development of ethical guidelines are crucial to overcoming these hurdles. Future trends include the further development of foundation models (large AI models that are based on broad datasets and can be used in a variety of ways), the integration of structured and unstructured data and greater personalisation in medicine. In the long term, AI can improve the quality and efficiency of healthcare. However, this requires close co-operation between research, industry and politics in order to ensure safe and sustainable implementation.

[人工智能(AI)在医疗保健中的实施:历史发展、当前技术和挑战]。
自20世纪60年代以来,人工智能(AI)在医疗保健领域的历史发展表明,从简单的基于规则的系统到复杂的数据驱动方法的转变。早期的应用侧重于决策支持,而创新的系统则使用神经网络和机器学习来识别大型数据集中的模式。人工智能技术与医学的融合带来了不同的应用领域,可分为预防人工智能、诊断人工智能、人工智能辅助治疗和行政人工智能。预防性人工智能分析风险因素以实现早期干预,而诊断性人工智能有助于更快、更准确的诊断。人工智能辅助治疗支持个性化治疗,如个性化用药。管理人工智能优化了预约安排、资源管理和计费等流程。尽管有潜力,人工智能系统也面临着挑战。这些问题包括卫生数据碎片化、缺乏标准化、数据保护问题和算法偏见。建立可互操作的数据基础设施和制定道德准则对于克服这些障碍至关重要。未来的趋势包括基础模型(基于广泛数据集并可以多种方式使用的大型人工智能模型)的进一步发展,结构化和非结构化数据的整合以及医学中更大的个性化。从长远来看,人工智能可以提高医疗保健的质量和效率。然而,这需要研究、工业和政治之间的密切合作,以确保安全和可持续的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
5.90%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen. Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信